当前位置: 首页 > news >正文

深入解密 K 均值聚类:从理论基础到 Python 实践

1. 引言

在机器学习领域,聚类是一种无监督学习的技术,用于将数据集分组成若干个类别,使得同组数据之间具有更高的相似性。这种技术在各个领域都有广泛的应用,比如客户细分、图像压缩和市场分析等。聚类的目标是使得同类样本之间的相似性最大化,而不同类样本之间的相似性最小化。

K 均值聚类 (K-Means Clustering) 是一种基于距离度量的迭代优化算法,通过选择若干个质心 (centroid) 来对数据进行分组,使得每个数据点所属的聚类内距离质心的距离之和最小化。由于其算法的简单性和高效性,K 均值在数据分析中被广泛使用。

在现实生活中,我们可以将 K 均值聚类应用于客户细分,以帮助企业识别具有相似购买行为的客户群体,或者用于图像压缩,通过将图像像素点聚类来减少颜色的数量。在这篇文章中,我们将深入探讨 K 均值聚类的数学原理、算法实现步骤,并提供 Python 代码示例来帮助读者理解其实际应用。

2. 什么是 K 均值聚类?

K 均值聚类是一种基于质心的聚类算法,它通过反复迭代的方式将数据点分配到 K 个聚类中。每个质心代表一个聚类的中心位置,算法会不断调整质心的位置,直到满足一定的收敛条件。K 均值聚类的目标是最小化每个聚类内部所有点到其质心的距离之和。

具体来说,K 均值聚类的步骤可以概括如下:

  1. 随机选择 K 个初始质心。

  2. 将每个数据点分配到离它最近的质心所在的聚类。

  3. 重新计算每个聚类的质心,即对聚类中的所有数据点取平均值。

  4. 重复步骤 2 和 3,直到质心的位置不再发生变化,或者达到预设的迭代次数。

K 均值聚类的最终结果是 K 个聚类,每个聚类由一个质心及其所有属于该聚类的数据点组成。其目标是使得每个聚类内的数据点与质心之间的总距离最小。

3. K 均值聚类的数学原理

K 均值聚类的目标是最小化每个数据点到所属质心的距离的平方和 (Sum of Squared Errors, SSE):

其中,

  • :聚类的数量。

  • :第 i 个聚类。

  • :第 i 个聚类的质心。

  • :属于聚类 的数据点。

这个优化问题的目标是通过不断调整每个聚类的质心来最小化 SSE。该过程通过交替进行两步:分配 (Assignment) 和更新 (Update),直到达到收敛条件。

4. 算法实现步骤详解

K 均值聚类算法主要包含以下步骤:

步骤 1:选择 K 值

K 值是指要将数据分成的聚类数。选择合适的 K 值是 K 均值聚类算法中一个非常重要的步骤,因为不合适的 K 值会影响聚类的效果。通常可以通过 "肘部法则 (Elbow Method)" 来确定合适的 K 值。

步骤 2:初始化质心

可以随机选择 K 个数据点作为初始质心,或者使用一些启发式的方法,如 K-Means++,以更好地初始化质心,减少随机性对聚类效果的影响。

步骤 3:分配数据点

将每个数据点分配到离它最近的质心所在的聚类中。通常使用欧几里得距离来计算数据点与质心之间的距离。

步骤 4:更新质心

对于每一个聚类,重新计算其质心的位置。具体来说,将聚类中的所有数据点的坐标进行平均,得到新的质心位置。

步骤 5:收敛判断

判断质心是否发生变化。如果质心位置不再变化,或者达到预设的最大迭代次数,算法停止。此时的聚类结果即为最终的聚类划分。

5. Python 代码实现

下面我们用 Python 及其常用库 NumPy 和 Matplotlib 实现 K 均值聚类算法:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
​
# 生成模拟数据集
np.random.seed(42)
X, y = make_blobs(n_samples=300, centers=4, cluster_std=0.6, random_state=0)
​
# 可视化数据集
plt.scatter(X[:, 0], X[:, 1], s=50)
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title('Generated Data')
plt.show()
​
# 定义K均值聚类算法
class KMeans:def __init__(self, k=3, max_iters=100, tol=1e-4):self.k = kself.max_iters = max_itersself.tol = tol
​def fit(self, X):self.centroids = X[np.random.choice(range(X.shape[0]), self.k, replace=False)]for _ in range(self.max_iters):# 分配数据点到最近的质心self.clusters = self._assign_clusters(X)# 重新计算质心new_centroids = self._compute_centroids(X)# 检查质心是否收敛if np.all(np.linalg.norm(self.centroids - new_centroids, axis=1) < self.tol):breakself.centroids = new_centroids
​def _assign_clusters(self, X):distances = np.linalg.norm(X[:, np.newaxis] - self.centroids, axis=2)return np.argmin(distances, axis=1)
​def _compute_centroids(self, X):return np.array([X[self.clusters == i].mean(axis=0) for i in range(self.k)])
​def predict(self, X):distances = np.linalg.norm(X[:, np.newaxis] - self.centroids, axis=2)return np.argmin(distances, axis=1)
​
# 训练模型
kmeans = KMeans(k=4)
kmeans.fit(X)
​
# 预测聚类结果
y_pred = kmeans.predict(X)
​
# 可视化聚类结果
plt.scatter(X[:, 0], X[:, 1], c=y_pred, cmap='viridis', s=50)
plt.scatter(kmeans.centroids[:, 0], kmeans.centroids[:, 1], s=200, c='red', marker='X')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title('K-Means Clustering Results')
plt.show()

6. 选择 K 值:肘部法则

选择合适的 K 值是 K 均值聚类的重要步骤。肘部法则是一种常用的方法,它通过计算不同 K 值下 SSE 的变化趋势来选择合适的 K。随着 K 的增加,SSE 会减少,但当减少的速度显著减小时,最佳 K 值即为 "肘部点"。

以下是使用肘部法则的代码示例:

sse = []
for k in range(1, 10):kmeans = KMeans(k=k)kmeans.fit(X)sse.append(sum(np.min(np.linalg.norm(X[:, np.newaxis] - kmeans.centroids, axis=2), axis=1) ** 2))
​
# 可视化肘部法则
plt.plot(range(1, 10), sse, marker='o')
plt.xlabel('Number of Clusters (K)')
plt.ylabel('SSE')
plt.title('Elbow Method for Optimal K')
plt.show()

7. K 均值聚类的优缺点

优点:
  • 简单易懂:K 均值聚类算法简单直观,易于实现。

  • 高效性:对于较大规模的数据,K 均值算法计算效率较高。

缺点:
  • 对初始值敏感:算法对初始质心位置敏感,可能陷入局部最优。K-Means++ 是一种改进方法,可以更好地选择初始质心。

  • 需指定 K 值:K 值需要事先给定,这对于不熟悉数据结构的用户来说是个挑战。

  • 易受异常值影响:异常值对质心计算有较大影响,可能使结果偏离。

8. K-Means++ 的改进

为了减少对初始质心选择的敏感性,K-Means++ 提供了一种改进策略,确保初始质心尽可能分散,减少局部最优解的可能性。Scikit-Learn 库实现的 KMeans 就采用了 K-Means++ 作为默认的初始质心选择方法。

from sklearn.cluster import KMeans
​
# 使用KMeans++初始化
kmeans = KMeans(n_clusters=4, init='k-means++', max_iter=300, n_init=10, random_state=0)
y_kmeans = kmeans.fit_predict(X)
​
# 可视化聚类结果
plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, cmap='viridis', s=50)
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s=200, c='red', marker='X')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title('K-Means++ Clustering Results')
plt.show()

9. 实际应用

K 均值聚类在实际生活中有着广泛的应用,包括:

  • 客户细分:根据购买行为或浏览习惯将客户进行分类,方便精准营销。

  • 图像压缩:通过对图像的像素进行聚类,将相似颜色的像素归为同一类,从而减少颜色种类,达到压缩图像的目的。

  • 市场分析:K 均值可以用于找出不同市场中的相似产品。

10. 总结

K 均值聚类是一种强大且简单的聚类算法,适合处理结构化的数值数据。它在很多应用场景下表现良好,但也有其局限性,比如对初始值敏感和易受异常值影响。在实际应用中,结合肘部法则和 K-Means++ 等改进方法,可以提高聚类效果。

希望本文让你对 K 均值聚类的原理和实现有更深的理解,并能利用代码在自己的项目中进行聚类分析。如果你有任何问题或建议,欢迎在评论区交流!

相关文章:

深入解密 K 均值聚类:从理论基础到 Python 实践

1. 引言 在机器学习领域&#xff0c;聚类是一种无监督学习的技术&#xff0c;用于将数据集分组成若干个类别&#xff0c;使得同组数据之间具有更高的相似性。这种技术在各个领域都有广泛的应用&#xff0c;比如客户细分、图像压缩和市场分析等。聚类的目标是使得同类样本之间的…...

ArcGIS应用指南:ArcGIS制作局部放大地图

在地理信息系统&#xff08;GIS&#xff09;中&#xff0c;制作详细且美观的地图是一项重要的技能。地图制作不仅仅是简单地将地理数据可视化&#xff0c;还需要考虑地图的可读性和美观性。局部放大图是一种常见的地图设计技巧&#xff0c;用于展示特定区域的详细信息&#xff…...

非root用户安装CUDA

1.使用nvidia-smi查看当前驱动支持的最高CUDA版本&#xff1a; 表示当前驱动最多支持cuda12.1 2.进入cuda安装界面&#xff0c;https://developer.nvidia.com/cuda-toolkit-archive&#xff0c;选择想要安装的版本&#xff0c;例如想要安装CUDA11.4&#xff1a; 如果需要查看ub…...

单点修改,区间求和或区间询问最值(线段树)

【题目描述】 给定一个长度为n的非负整数序列&#xff0c;接下来有m次操作&#xff0c;操作共有3种&#xff1a;一是修改序列中某个元素的大小&#xff0c;二是求某个区间的所有元素的和&#xff0c;三是询问某个区间的最大值。整数序列下标从1开始。n<10^5, m<10^5。 …...

线性代数空间理解

学习线性代数已经很久&#xff0c;但是在使用过程中仍然还是不明所以&#xff0c;比如不知道特征向量和特征值的含义、矩阵的相乘是什么意思、如何理解矩阵的秩……。随着遇到的次数越来越多&#xff0c;因此我决定需要对线性代数的本质做一次深刻的探讨了。 本次主要是参考了3…...

Spring Boot教程之五:在 IntelliJ IDEA 中运行第一个 Spring Boot 应用程序

在 IntelliJ IDEA 中运行第一个 Spring Boot 应用程序 IntelliJ IDEA 是一个用 Java 编写的集成开发环境 (IDE)。它用于开发计算机软件。此 IDE 由 Jetbrains 开发&#xff0c;提供 Apache 2 许可社区版和商业版。它是一种智能的上下文感知 IDE&#xff0c;可用于在各种应用程序…...

C51相关实验

C51相关实验 LED //功能&#xff1a;1.让开发板的LED全亮&#xff0c;2,点亮某一个LED,3.让LED3以5Hz的频率闪动#include "reg52.h"#define LED P2 sbit led1 LED^1;void main(void) {LED 0xff;//LED全灭led1 0;while(1)//保持应用程序不退出{} }LED 输出端是高…...

docker离线安装linux部分问题整理

0:离线安装docker过程命令 echo $PATH tar -zxvf docker-26.1.4.tgz chmod 755 -R docker cp docker/* /usr/bin/ root 权限 vim /etc/systemd/system/docker.service --------- [Unit] DescriptionDocker Application Container Engine Documentationhttps://docs.do…...

ISUP协议视频平台EasyCVR萤石设备视频接入平台银行营业网点安全防范系统解决方案

在金融行业&#xff0c;银行营业厅的安全保卫工作至关重要&#xff0c;它不仅关系到客户资金的安全&#xff0c;也关系到整个银行的信誉和运营效率。随着科技的发展&#xff0c;传统的安全防护措施已经无法满足现代银行对于高效、智能化安全管理的需求。 EasyCVR视频汇聚平台以…...

递推概念和例题

一、什么是递推 递推算法以初始值为基础&#xff0c;用相同的运算规律&#xff0c;逐次重复运算&#xff0c;直至求出问题的解&#xff0c;它的本质是按照固定的规律逐步推出&#xff08;计算出&#xff09;下一步的结果 这种从“起点”重复相同的的方法直至到达问题的解&…...

开发工具 - VSCode 快捷键

以下是一些常用的 VS Code 快捷键&#xff08;Windows、macOS 和 Linux 均适用&#xff0c;略有不同&#xff09;&#xff1a; 常用快捷键 功能Windows/LinuxmacOS打开命令面板Ctrl Shift P 或 F1Cmd Shift P打开文件Ctrl OCmd O保存文件Ctrl SCmd S全部保存Ctrl K,…...

数据库的联合查询

数据库的联合查询 简介为什么要使⽤联合查询多表联合查询时MYSQL内部是如何进⾏计算的构造练习案例数据案例&#xff1a;⼀个完整的联合查询的过程 内连接语法⽰例 外连接语法 ⽰例⾃连接应⽤场景示例表连接练习 ⼦查询语法单⾏⼦查询多⾏⼦查询多列⼦查询在from⼦句中使⽤⼦查…...

【人工智能】基于PyTorch的深度强化学习入门:从DQN到PPO的实现与解析

《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 深度强化学习(Deep Reinforcement Learning)是一种结合深度学习和强化学习的技术,适用于解决复杂的决策问题。深度Q网络(DQN)和近端策略优化(PPO)是其中两种经典的算法,被广泛应用于游戏、机器人控…...

【深度学习】【RKNN】【C++】模型转化、环境搭建以及模型部署的详细教程

【深度学习】【RKNN】【C】模型转化、环境搭建以及模型部署的详细教程 提示:博主取舍了很多大佬的博文并亲测有效,分享笔记邀大家共同学习讨论 文章目录 【深度学习】【RKNN】【C】模型转化、环境搭建以及模型部署的详细教程前言模型转换--pytorch转rknnpytorch转onnxonnx转rkn…...

CentOS环境上离线安装python3及相关包

0. 准备操作系统及安装包 准备操作系统环境&#xff1a; 首先安装依赖包&#xff0c;安装相应的编译工具 [rootbigdatahost bin]# yum -y install zlib-devel bzip2-devel openssl-devel ncurses-devel sqlite-devel readline-devel tk-devel gdbm-devel db4-devel libpcap-d…...

学习threejs,使用设置bumpMap凹凸贴图创建褶皱,实现贴图厚度效果

&#x1f468;‍⚕️ 主页&#xff1a; gis分享者 &#x1f468;‍⚕️ 感谢各位大佬 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍⚕️ 收录于专栏&#xff1a;threejs gis工程师 文章目录 一、&#x1f340;前言1.1 ☘️THREE.MeshPhongMaterial高…...

React表单联动

Ant Design 1、dependencies Form.Item 可以通过 dependencies 属性&#xff0c;设置关联字段。当关联字段的值发生变化时&#xff0c;会触发校验与更新。 一种常见的场景&#xff1a;注册用户表单的“密码”与“确认密码”字段。“确认密码”校验依赖于“密码”字段&#x…...

408数据结构:栈、队列和数组选择题做题笔记

408数据结构 第一章 绪论 第二章 线性表 绪论、线性表选择题做题笔记 第三章 栈、队列和数组 栈、队列和数组选择题做题笔记 文章目录 408数据结构前言 一、队列二、栈和队列的应用总结 前言 本篇文章为针对王道25数据结构课后习题的栈、队列和数组的做题笔记&#xff0c;后续…...

sql工具!好用!爱用!

SQLynx的界面设计简洁明了&#xff0c;操作逻辑清晰易懂&#xff0c;没有复杂的图标和按钮&#xff0c;想对哪部分操作就在哪里点击右键&#xff0c;即使你是数据库小白也能轻松上手。 尽管SQLynx是一款免费的工具&#xff0c;但是它的功能却丝毫不逊色于其他付费产品&#xff…...

嵌入式驱动开发详解3(pinctrl和gpio子系统)

文章目录 前言pinctrl子系统pin引脚配置pinctrl驱动详解 gpio子系统gpio属性配置gpio子系统驱动gpio子系统API函数与gpio子系统相关的of函数 pinctrl和gpio子系统的使用设备树配置驱动层部分用户层部分 前言 如果不用pinctrl和gpio子系统的话&#xff0c;我们开发驱动时需要先…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

.Net框架,除了EF还有很多很多......

文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下&#xff0c;虚拟教学实训宛如一颗璀璨的新星&#xff0c;正发挥着不可或缺且日益凸显的关键作用&#xff0c;源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例&#xff0c;汽车生产线上各类…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来&#xff0c;实在找不到&#xff0c;希望有大佬教一下我。 还有就会议时间&#xff0c;我感觉不是图片时间&#xff0c;因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

《C++ 模板》

目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板&#xff0c;就像一个模具&#xff0c;里面可以将不同类型的材料做成一个形状&#xff0c;其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式&#xff1a;templa…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态&#xff08;编译时多态&#xff09; 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1&#xff09;.协变 2&#xff09;.析构函数的重写 5.override 和 final关键字 1&#…...