当前位置: 首页 > news >正文

深入解读 MongoDB 查询耗时:Execution 和 Fetching 阶段详解


在使用 MongoDB 时,查询性能的分析与优化是开发者关注的重点。MongoDB 的查询过程通常分为两个主要阶段:Execution(执行阶段)Fetching(拉取阶段)。每个阶段的耗时代表不同的性能瓶颈,优化思路也截然不同。本文将详细解析这两个阶段的含义,并分享如何针对性地优化查询性能。


一、Execution 和 Fetching 的含义

1. Execution(执行阶段)
  • 定义
    Execution 是指查询在 MongoDB 服务端执行的时间,包括从解析查询条件到生成结果集的整个过程。

  • 涉及的操作

    • 查询解析:分析用户的查询语句。
    • 索引扫描:根据查询条件扫描相关索引。
    • 数据读取:从磁盘或内存中加载符合条件的数据。
    • 数据处理:执行聚合、排序、投影等操作。
  • 影响因素

    • 索引设计是否合理。
    • 查询条件是否高效(如是否避免全表扫描)。
    • 文档的大小和结构。
    • 复杂的排序、聚合或嵌套查询逻辑。

2. Fetching(拉取阶段)
  • 定义
    Fetching 是指将查询结果从 MongoDB 服务器传输到客户端的时间,主要与网络性能和数据量有关。

  • 涉及的操作

    • 数据序列化:将文档转换为 BSON 格式。
    • 数据传输:通过网络将结果集发送到客户端。
    • 客户端处理:客户端接收并解析返回的数据。
  • 影响因素

    • 查询返回的数据量(文档数量、字段大小)。
    • 网络带宽和延迟。
    • 客户端的性能(如数据解析速度)。

二、查询性能瓶颈分析

在实际开发中,不同阶段的耗时体现了不同的性能瓶颈。以下是一个查询的耗时示例:

Execution Time: 5ms
Fetching Time: 700ms
  • Execution 时间短(5ms)
    表明 MongoDB 服务器在处理查询逻辑时效率较高,可能使用了合适的索引,查询条件也较简单。

  • Fetching 时间长(700ms)
    说明性能瓶颈出现在数据传输阶段,通常与数据量过大或网络性能较差有关。


三、Execution 的优化方法

  1. 确保查询使用索引

    • 使用 explain() 检查查询是否命中索引:
      db.collection.find({ query_condition }).explain("executionStats");
      
    • 如果查询未使用索引,考虑为高频查询字段创建索引:
      db.collection.createIndex({ field: 1 });
      
  2. 避免复杂查询

    • 避免嵌套或计算量大的查询,尽量通过预处理简化查询逻辑。
    • 对聚合查询,可以考虑通过 $match 优化筛选顺序。
  3. 控制文档大小

    • 减少单个文档的字段数量或嵌套深度。
    • 将大字段(如图片或日志)拆分到单独的集合中。

四、Fetching 的优化方法

  1. 减少返回数据量

    • 使用投影:只返回必要的字段。
      db.collection.find({ query_condition }, { field1: 1, field2: 1 });
      
    • 分页加载:通过 limitskip 分批返回数据。
      db.collection.find({ query_condition }).limit(20).skip(0);
      
  2. 启用压缩

    • 在 MongoDB 配置中启用传输压缩(如 zlibsnappy):
      net:compression:compressors: [zlib, snappy]
      
    • 确保客户端连接字符串支持压缩:
      mongodb://localhost:27017/?compressors=zlib
      
  3. 优化网络性能

    • 将客户端和服务器部署在同一数据中心或靠近的区域。
    • 提升带宽,避免因网络拥堵导致高延迟。

五、综合优化效果

通过以上方法,可以显著优化查询性能。以下是一个优化案例的效果对比:

优化措施原始状态优化后
数据量6MB1.5MB
Execution Time5ms5ms
Fetching Time700ms-900ms100ms-200ms
优化点减少字段、压缩传输、分页精简返回数据 + 高效传输

六、总结

在 MongoDB 的查询过程中,Execution 和 Fetching 阶段分别代表了服务器端的处理效率和数据传输的性能。通过合理设计索引、简化查询逻辑、启用压缩、分页加载等方法,我们可以针对性地优化每个阶段的耗时。

性能优化没有一刀切的方法,只有结合实际场景进行分析才能找到最优解。希望本文能为你提供思路,助你解决实际开发中的性能问题!

如果你有类似的问题或更好的优化实践,欢迎在评论区分享交流!

相关文章:

深入解读 MongoDB 查询耗时:Execution 和 Fetching 阶段详解

在使用 MongoDB 时,查询性能的分析与优化是开发者关注的重点。MongoDB 的查询过程通常分为两个主要阶段:Execution(执行阶段)和Fetching(拉取阶段)。每个阶段的耗时代表不同的性能瓶颈,优化思路…...

frida_hook_dlopen(当年到lib目录下找发现一个so都没有,hook下dlopen)

Frida 脚本用于拦截 Android 应用程序中的 dlopen 和 android_dlopen_ext 函数。这两个函数用于动态加载共享库,脚本通过拦截这些函数的调用来记录加载的库的路径。 代码分析 var dlopen Module.findExportByName(null, "dlopen"); // 6.0 var android…...

Zero to JupyterHub with Kubernetes中篇 - Kubernetes 常规使用记录

前言:纯个人记录使用。 搭建 Zero to JupyterHub with Kubernetes 上篇 - Kubernetes 离线二进制部署。搭建 Zero to JupyterHub with Kubernetes 中篇 - Kubernetes 常规使用记录。搭建 Zero to JupyterHub with Kubernetes 下篇 - Jupyterhub on k8s。 参考&…...

WordCloud去掉停用词(fit_words+generate)的2种用法

-------------词云图集合------------- WordCloud去掉停用词(fit_wordsgenerate)的2种用法 通过词频来绘制词云图(jiebaWordCloud) Python教程95:去掉停用词词频统计jieba.tokenize示例用法 将进酒—李白process_t…...

Python 中如何处理异常?

在Python中,异常处理是一种重要的编程技术,它允许开发者优雅地处理程序运行过程中出现的错误或异常情况,而不是让程序直接崩溃。 通过异常处理,我们可以使程序更加健壮、用户友好。 异常处理的基本结构 Python中最基本的异常处…...

C++——多态(下)

目录 引言 多态 4.多态的原理 4.1 虚函数表指针 4.2 多态的原理 5.单继承和多继承关系的虚函数表 5.1 单继承中的虚函数表 5.2 多继承中的虚函数表 结束语 引言 接下来我们继续学习多态。 没有阅读多态(上)的可以点击下面的链接哦~ C——多态…...

qsort函数详解+代码展示

文章目录 概要系列文章目录前言(1) 定义(2) 使用(举例子 上代码)1、定义数组:2、定义比较函数:3、调用 qsort:4、输出结果: (3) 注意事项 小结 概要 本篇博客将详细地介绍qsort排序函数,&#x…...

leetcode hot100【LeetCode 136. 只出现一次的数字】java实现

LeetCode 136. 只出现一次的数字 题目描述 给定一个非空整数数组,除了某个元素只出现一次以外,其余每个元素均出现两次。找出那个只出现了一次的元素。 你必须设计并实现线性时间复杂度的算法来解决此问题,且该算法只使用常量额外空间。 …...

(免费送源码)计算机毕业设计原创定制:Java+ssm+JSP+Ajax SSM棕榈校园论坛的开发

摘要 随着计算机科学技术的高速发展,计算机成了人们日常生活的必需品,从而也带动了一系列与此相关产业,是人们的生活发生了翻天覆地的变化,而网络化的出现也在改变着人们传统的生活方式,包括工作,学习,社交…...

对抗攻击算法:FGSM和PGD

FGSM 传送门 FGSM 利用了梯度上升的思想,通过损失函数相对于输入图像的梯度来找到 最容易 迷惑网络的方向,并沿着这个方向对图像进行微小的扰动。 FGSM 的基本想法是,沿着这个梯度的符号方向对图像进行微调,以最大化损失函数。具…...

【八股文】小米

文章目录 一、vector 和 list 的区别?二、include 双引号和尖括号的区别?三、set 的底层数据结构?四、set 和 multiset 的区别?五、map 和 unordered_map 的区别?六、虚函数和纯虚函数的区别?七、extern C …...

xtu oj 众数

样例输入# 3 1 0 1 2 1 1 2 3 1 1 2 2样例输出# 1 2 3 解题思路:与数组大小有关,先排序 举个例子思考一下 n4 k2 数组为1 2 3 4 如果我们想让众数那个位的值为3(即max3),3出现的次数为3,即众数为3,需要修改多少次…...

ENVI计算ROI分离度为灰色compute roi separability

我们在使用ENVI做影像分类的时候,需要采集样本兴趣区(ROI),在采集完兴趣区需要计算样本ROI的分离度。 但是有时会发下你 计算ROI分离度的选项为灰色状态不能计算。 如果不是以下问题: “一个是必须首先选择或创建至少…...

Adaboost集成学习 | Python实现基于NuSVR-Adaboost多输入单输出回归预测

目录 效果一览基本介绍程序设计参考资料效果一览 基本介绍 基于NuSVR-Adaboost多输入单输出回归预测python代码 NuSVR是一种支持向量回归(SVR)算法的变体,用于解决回归问题。SVR是一种监督学习方法,它用于预测连续目标变量,而不是分类标签。NuSVR在SVR的基础上引入了一个…...

Python学习第十三天--面向对象,类和对象

一、面向过程和面向对象区别 面向过程:需要实现一个功能时,着重的是开发的步骤和过程,每个步都需要自己亲力亲为,需要编写代码(自己来做) 面向对象:需要实现一个功能时,不注重的是…...

AI运用落地思考:如何用AI进行系统运维?

1. 故障预测与预防 数据收集与分析:通过收集系统的各种运行数据,如服务器性能指标(CPU使用率、内存占用、磁盘I/O等)、网络流量数据、应用程序日志等。利用AI算法对这些海量数据进行分析,挖掘数据中的模式和相关性。例…...

springboot学习-分页/排序/多表查询的例子

最近喜欢上了springboot,真是个好的脚手架。今天继续学习分页/排序/多表查询等复杂功能。按步骤记录如下. 按步骤做的发现不可用,最终还是用的jdbctemplate解决。这也是一次经验。总计在最后。 1.maven依赖 首先从https://start.spring.io/ 选择需要的…...

windows 应用 UI 自动化实战

UI 自动化技术架构选型 UI 自动化是软件测试过程中的重要一环,网络上也有很多 UI 自动化相关的知识或资料,具体到 windows 端的 UI 自动化,我们需要从以下几个方面考虑: 开发语言 毋庸置疑,在 UI 自动化测试领域&am…...

ffmpeg命令详解

原文网址:ffmpeg命令详解_IT利刃出鞘的博客-CSDN博客 简介 本文介绍ffmpeg命令的用法。 命令示例 1.mp4和avi的基本互转 ffmpeg -i D:\input.mp4 E:\output.avi ffmpeg -i D:\input.avi E:\output.mp4 -i 表示input,即输入。后面填一个输入地址和一…...

【漏洞复现】CVE-2022-43396

漏洞信息 NVD - CVE-2022-43396 In the fix for CVE-2022-24697, a blacklist is used to filter user input commands. But there is a risk of being bypassed. The user can control the command by controlling the kylin.engine.spark-cmd parameter of conf. 背景介绍…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

scikit-learn机器学习

# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...

Bean 作用域有哪些?如何答出技术深度?

导语&#xff1a; Spring 面试绕不开 Bean 的作用域问题&#xff0c;这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开&#xff0c;结合典型面试题及实战场景&#xff0c;帮你厘清重点&#xff0c;打破模板式回答&#xff0c…...

AI语音助手的Python实现

引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...

通过MicroSip配置自己的freeswitch服务器进行调试记录

之前用docker安装的freeswitch的&#xff0c;启动是正常的&#xff0c; 但用下面的Microsip连接不上 主要原因有可能一下几个 1、通过下面命令可以看 [rootlocalhost default]# docker exec -it freeswitch fs_cli -x "sofia status profile internal"Name …...

LUA+Reids实现库存秒杀预扣减 记录流水 以及自己的思考

目录 lua脚本 记录流水 记录流水的作用 流水什么时候删除 我们在做库存扣减的时候&#xff0c;显示基于Lua脚本和Redis实现的预扣减 这样可以在秒杀扣减的时候保证操作的原子性和高效性 lua脚本 // ... 已有代码 ...Overridepublic InventoryResponse decrease(Inventor…...

MyBatis-Plus 常用条件构造方法

1.常用条件方法 方法 说明eq等于 ne不等于 <>gt大于 >ge大于等于 >lt小于 <le小于等于 <betweenBETWEEN 值1 AND 值2notBetweenNOT BETWEEN 值1 AND 值2likeLIKE %值%notLikeNOT LIKE %值%likeLeftLIKE %值likeRightLIKE 值%isNull字段 IS NULLisNotNull字段…...

SFTrack:面向警务无人机的自适应多目标跟踪算法——突破小尺度高速运动目标的追踪瓶颈

【导读】 本文针对无人机&#xff08;UAV&#xff09;视频中目标尺寸小、运动快导致的多目标跟踪难题&#xff0c;提出一种更简单高效的方法。核心创新在于从低置信度检测启动跟踪&#xff08;贴合无人机场景特性&#xff09;&#xff0c;并改进传统外观匹配算法以关联此类检测…...