当前位置: 首页 > news >正文

如何启用本机GPU硬件加速猿大师播放器网页同时播放多路RTSP H.265 1080P高清摄像头RTSP视频流?

目前市面上主流播放RTSP视频流的方式是用服务器转码方案,这种方案的好处是兼容性更强,可以用于不同的平台,比如:Windows、Linux或者手机端,但是缺点也很明显:延迟高、播放高清或者同时播放多路视频视频容易卡顿或者花屏,对于一些行业来说延迟多一秒就就产生严重的后果,并且一些大屏项目同时需要播放多路视频,服务器转码就不太适合了。

如果能有一种直接播放方案,并且可以充分利用本机的GPU硬件加速来播放,哪怕多路播放一些1080P级别的高清视频,播放也会非常流畅。

而猿大师播放器不同于市面上主流的服务器转码或者用流媒体服务,不需要服务器转码转流,就可以在浏览器中直接播放RTSP视频流,并且充分发挥本机的硬件解码和加速功能,播放高清视频或者多路同时播放播放更流畅。

猿大师播放器支持本机的GPU硬件加速功能,如果没有开启GPU,播放高清视频或同时播放多路视频会导致CPU占用过高,需要你的电脑开启硬件加速功能才能使播放更流畅。

以Win10为例,开启GPU方式如下:

开启GPU后,将猿大师播放器的VLC引擎及多引擎均选择为高性能模式,重启电脑后才能生效,如下:

下面是同时播放16路 RTSP H.265 1080P效果图:(图片做了模糊处理)

相关文章:

如何启用本机GPU硬件加速猿大师播放器网页同时播放多路RTSP H.265 1080P高清摄像头RTSP视频流?

目前市面上主流播放RTSP视频流的方式是用服务器转码方案,这种方案的好处是兼容性更强,可以用于不同的平台,比如:Windows、Linux或者手机端,但是缺点也很明显:延迟高、播放高清或者同时播放多路视频视频容易…...

如何更好地设计SaaS系统架构

SaaS(Software as a Service)架构设计的核心目标是满足多租户需求、支持弹性扩展和高性能,同时保持低成本和高可靠性。一个成功的SaaS系统需要兼顾技术架构、资源利用、用户体验和商业目标。本文从以下几个方面探讨如何更好地设计SaaS系统架构…...

表征对齐在训练DiT模型中的重要性

Diffusion Models专栏文章汇总:入门与实战 前言:训练过DiT模型的读者们肯定有所体会,相比于UNet模型训练难度大了很多,模型不仅很难收敛,而且非常容易训崩,其中一个很重要的原因是没有进行表征对齐&#xf…...

Qt中CMakeLists.txt解释大全

‌Qt从Qt5.15版本开始正式推荐使用CMake进行项目管理‌。 在Qt 5.15之前,虽然可以使用CMake进行构建,但Qt官方更推荐使用qmake。 然而,从Qt5.15开始,Qt官方正式推荐使用CMake作为主要的构建系统,并在Qt 6中进一步加强了…...

【在 PyTorch 中使用 tqdm 显示训练进度条,并解决常见错误TypeError: ‘module‘ object is not callable】

在 PyTorch 中使用 tqdm 显示训练进度条,并解决常见错误TypeError: module object is not callable 在进行深度学习模型训练时,尤其是在处理大规模数据时,实时了解训练过程中的进展是非常重要的。为了实现这一点,我们可以使用 tq…...

数据结构-堆的实现和应用

目录 1.堆的概念 2.堆的构建 3.堆的实现 4.堆的功能实现 4.1堆的初始化 4.2堆的销毁 4.3堆的插入 4.3.1向上调整 4.4堆的删除 4.4.1向下调整法 ​编辑4.5取堆顶 5. 向上调整法和向下调整法比较 6.堆的应用 6.1TOP-K问题 6.2TOP-K思路 6.2.1用前n个数据来建堆 6.…...

数据分析的尽头是web APP?

数据分析的尽头是web APP? 在做了一些数据分析的项目,也制作了一些数据分析相关的web APP之后,总结自己的一些想法和大家分享。 1.web APP是呈现数据分析结果的另外一种形式。 数据分析常见的结果是数据分析报告,可以是PPT或者…...

YOLO系列论文综述(从YOLOv1到YOLOv11)【第3篇:YOLOv1——YOLO的开山之作】

YOLOv1 1 摘要2 YOLO: You Only Look Once2.1 如何工作2.2 网络架构2.3 训练2.4 优缺点 YOLO系列博文: 【第1篇:概述物体检测算法发展史、YOLO应用领域、评价指标和NMS】【第2篇:YOLO系列论文、代码和主要优缺点汇总】 ——————————…...

容器和它的隔离机制

什么是容器和它的隔离机制? 容器 是一种轻量化的虚拟化技术,它允许多个应用程序共享同一个操作系统(OS)内核,同时为每个应用程序提供自己的运行环境。容器通过利用 Linux 的内核功能(如 Namespaces 和 Cgr…...

【数据结构与算法】排序算法总结:冒泡 / 快排 / 直接插入 / 希尔 / 简单选择 / 堆排序 / 归并排序

1 排序 1.1 冒泡 内排序的交换排序类别 1.1.1 普通实现 public class BubbleSort {/*** 基本的 冒泡排序*/public static void bubbleSort(int[] srcArray) {int i,j; // 用于存放数组下标int temp 0; // 用于交换数值时临时存放值for(i0;i<srcArray.length-1;i){// j …...

Windows Serv 2019 虚拟机 安装Oracle19c,图文详情(超详细)

1、下载安装文件 Oracle官网下载直链&#xff1a;https://www.oracle.com/database/technologies/oracle-database-software-downloads.html#db_ee 夸克网盘下载&#xff1a;https://pan.quark.cn/s/1460a663ee83 2、新建 Windows Server 2019 虚拟机 &#xff08;超详细&a…...

数字孪生开发之 Three.js 插件资源库(2)

在当今数字化快速发展的时代&#xff0c;数字孪生技术正逐渐成为各个领域的关键技术之一。它通过创建物理实体的虚拟副本&#xff0c;实现对实体的实时监测、模拟和优化&#xff0c;为企业和组织带来了诸多好处&#xff0c;如提高生产效率、降低成本、改进产品质量等。然而&…...

小米C++ 面试题及参考答案下(120道面试题覆盖各种类型八股文)

指针和引用的区别?怎么实现的? 指针和引用有以下一些主要区别。 从概念上来说,指针是一个变量,它存储的是另一个变量的地址。可以通过指针来间接访问所指向的变量。例如,我们定义一个整型指针int *p;,它可以指向一个整型变量的内存地址。而引用是一个别名,它必须在定义的…...

OpenOCD之J-Link下载

NOTE&#xff1a;此篇文章由笔者的 VSCode编辑GCC for ARM交叉编译工具链Makefile构建OpenOCD调试&#xff08;基于STM32的标准库&#xff09;派生而来。 1.下载USB Dirver Tool.exe&#xff0c;选择J-Link dirver&#xff0c;替换成WinUSB驱动。&#xff08;⭐USB Dirver Tool…...

华为云云连接+squid进行正向代理上网冲浪

1 概述 ‌Squid‌是一个高性能的代理缓存服务器&#xff0c;主要用于缓冲Internet数据。它支持多种协议&#xff0c;包括FTP、gopher、HTTPS和HTTP。Squid通过一个单独的、非模块化的、I/O驱动的进程来处理所有的客户端请求&#xff0c;这使得它在处理请求时具有较高的效率‌。…...

情绪识别项目

文章目录 1、mp4s文件转mp3文件2、Audition下载3、Audition安装4、Audition使用&#xff1a; 1、mp4s文件转mp3文件 在线转&#xff1a;Convert audio to MP3&#xff08;https://audio.online-convert.com/convert-to-mp3&#xff09; 2、Audition下载 Audition CC2019/64位…...

【RISC-V CPU debug 专栏 2.2 -- Hart DM States】

文章目录 Hart DM StatesHart 的 DM 状态1. 不存在(Non-existent)2. 不可用(Unavailable)3. 运行(Running)4. 暂停(Halted)状态转换与复位行为状态指示信号Hart DM States 在 RISC-V 调试架构中,每个可以被选择的硬件线程(hart)处于以下四种调试模块(DM)状态之一…...

从零样本到少样本学习:一文读懂 Zero-shot、One-shot 和 Few-shot 的核心原理与应用!

爆款标题&#xff1a; 《从零样本到少样本学习&#xff1a;一文读懂 Zero-shot、One-shot 和 Few-shot 的核心原理与应用&#xff01;》 正文&#xff1a; 在自然语言处理&#xff08;NLP&#xff09;领域&#xff0c;Zero-shot、One-shot 和 Few-shot 学习已经成为衡量大语言…...

【LC】3101. 交替子数组计数

题目描述&#xff1a; 给你一个二进制数组nums 。如果一个子数组中 不存在 两个 相邻 元素的值 相同 的情况&#xff0c;我们称这样的子数组为 交替子数组 。返回数组 nums 中交替子数组的数量。 示例 1&#xff1a; 输入&#xff1a; nums [0,1,1,1] 输出&#xff1a; 5 …...

如何构建SAAS项目

在后台使用JDBC方式动态创建用户输入的数据库信息&#xff08;库名、地址、用户名、密码&#xff09; 执行预先写好的sql文件&#xff08;如mybatis的scriptRunner)执行建表语句及插入基础数据&#xff08;管理员用户、普通用户&#xff09;...

Python|GIF 解析与构建(5):手搓截屏和帧率控制

目录 Python&#xff5c;GIF 解析与构建&#xff08;5&#xff09;&#xff1a;手搓截屏和帧率控制 一、引言 二、技术实现&#xff1a;手搓截屏模块 2.1 核心原理 2.2 代码解析&#xff1a;ScreenshotData类 2.2.1 截图函数&#xff1a;capture_screen 三、技术实现&…...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手&#xff1a;借助大模型技术&#xff0c;开发能根据用户输入的主题、风格等要求&#xff0c;生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用&#xff0c;帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框&#xff0c;很难让人不联想到SQL注入&#xff0c;但提示都说了不是SQL注入&#xff0c;所以就不往这方面想了 ​ 先查看一下网页源码&#xff0c;发现一段JavaScript代码&#xff0c;有一个关键类ctfs…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

C++:std::is_convertible

C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...