当前位置: 首页 > news >正文

【RISC-V CPU debug 专栏 2.2 -- Hart DM States】

文章目录

    • Hart DM States
    • Hart 的 DM 状态
      • 1. 不存在(Non-existent)
      • 2. 不可用(Unavailable)
      • 3. 运行(Running)
      • 4. 暂停(Halted)
    • 状态转换与复位行为
    • 状态指示信号

Hart DM States

在 RISC-V 调试架构中,每个可以被选择的硬件线程(hart)处于以下四种调试模块(DM)状态之一:

  • 不存在、non-existent
  • 不可用、unavailable
  • 运行,running
  • 暂停, halted

以下是对每种状态的详细描述:

Hart 的 DM 状态

1. 不存在(Non-existent)

  • 定义:

    • 如果一个 hart 永远不会成为该硬件平台的一部分,则它被视为不存在。
    • 例如,在一个简单的单 hart 硬件平台中,只有一个 hart 存在,其他所有 hart 都被视为不存在。
  • 调试器行为:

    • 调试器可以假设硬件平台中不存在索引高于第一个不存在 hart

相关文章:

【RISC-V CPU debug 专栏 2.2 -- Hart DM States】

文章目录 Hart DM StatesHart 的 DM 状态1. 不存在(Non-existent)2. 不可用(Unavailable)3. 运行(Running)4. 暂停(Halted)状态转换与复位行为状态指示信号Hart DM States 在 RISC-V 调试架构中,每个可以被选择的硬件线程(hart)处于以下四种调试模块(DM)状态之一…...

从零样本到少样本学习:一文读懂 Zero-shot、One-shot 和 Few-shot 的核心原理与应用!

爆款标题: 《从零样本到少样本学习:一文读懂 Zero-shot、One-shot 和 Few-shot 的核心原理与应用!》 正文: 在自然语言处理(NLP)领域,Zero-shot、One-shot 和 Few-shot 学习已经成为衡量大语言…...

【LC】3101. 交替子数组计数

题目描述: 给你一个二进制数组nums 。如果一个子数组中 不存在 两个 相邻 元素的值 相同 的情况,我们称这样的子数组为 交替子数组 。返回数组 nums 中交替子数组的数量。 示例 1: 输入: nums [0,1,1,1] 输出: 5 …...

如何构建SAAS项目

在后台使用JDBC方式动态创建用户输入的数据库信息(库名、地址、用户名、密码) 执行预先写好的sql文件(如mybatis的scriptRunner)执行建表语句及插入基础数据(管理员用户、普通用户)...

树莓派搭建NextCloud:给数据一个安全的家

前言 NAS有很多方案,常见的有 Nextcloud、Seafile、iStoreOS、Synology、ownCloud 和 OpenMediaVault ,以下是他们的特点: 1. Nextcloud 优势: 功能全面:支持文件同步、共享、在线文档编辑、视频会议、日历、联系人…...

深入解读 MongoDB 查询耗时:Execution 和 Fetching 阶段详解

在使用 MongoDB 时,查询性能的分析与优化是开发者关注的重点。MongoDB 的查询过程通常分为两个主要阶段:Execution(执行阶段)和Fetching(拉取阶段)。每个阶段的耗时代表不同的性能瓶颈,优化思路…...

frida_hook_dlopen(当年到lib目录下找发现一个so都没有,hook下dlopen)

Frida 脚本用于拦截 Android 应用程序中的 dlopen 和 android_dlopen_ext 函数。这两个函数用于动态加载共享库,脚本通过拦截这些函数的调用来记录加载的库的路径。 代码分析 var dlopen Module.findExportByName(null, "dlopen"); // 6.0 var android…...

Zero to JupyterHub with Kubernetes中篇 - Kubernetes 常规使用记录

前言:纯个人记录使用。 搭建 Zero to JupyterHub with Kubernetes 上篇 - Kubernetes 离线二进制部署。搭建 Zero to JupyterHub with Kubernetes 中篇 - Kubernetes 常规使用记录。搭建 Zero to JupyterHub with Kubernetes 下篇 - Jupyterhub on k8s。 参考&…...

WordCloud去掉停用词(fit_words+generate)的2种用法

-------------词云图集合------------- WordCloud去掉停用词(fit_wordsgenerate)的2种用法 通过词频来绘制词云图(jiebaWordCloud) Python教程95:去掉停用词词频统计jieba.tokenize示例用法 将进酒—李白process_t…...

Python 中如何处理异常?

在Python中,异常处理是一种重要的编程技术,它允许开发者优雅地处理程序运行过程中出现的错误或异常情况,而不是让程序直接崩溃。 通过异常处理,我们可以使程序更加健壮、用户友好。 异常处理的基本结构 Python中最基本的异常处…...

C++——多态(下)

目录 引言 多态 4.多态的原理 4.1 虚函数表指针 4.2 多态的原理 5.单继承和多继承关系的虚函数表 5.1 单继承中的虚函数表 5.2 多继承中的虚函数表 结束语 引言 接下来我们继续学习多态。 没有阅读多态(上)的可以点击下面的链接哦~ C——多态…...

qsort函数详解+代码展示

文章目录 概要系列文章目录前言(1) 定义(2) 使用(举例子 上代码)1、定义数组:2、定义比较函数:3、调用 qsort:4、输出结果: (3) 注意事项 小结 概要 本篇博客将详细地介绍qsort排序函数,&#x…...

leetcode hot100【LeetCode 136. 只出现一次的数字】java实现

LeetCode 136. 只出现一次的数字 题目描述 给定一个非空整数数组,除了某个元素只出现一次以外,其余每个元素均出现两次。找出那个只出现了一次的元素。 你必须设计并实现线性时间复杂度的算法来解决此问题,且该算法只使用常量额外空间。 …...

(免费送源码)计算机毕业设计原创定制:Java+ssm+JSP+Ajax SSM棕榈校园论坛的开发

摘要 随着计算机科学技术的高速发展,计算机成了人们日常生活的必需品,从而也带动了一系列与此相关产业,是人们的生活发生了翻天覆地的变化,而网络化的出现也在改变着人们传统的生活方式,包括工作,学习,社交…...

对抗攻击算法:FGSM和PGD

FGSM 传送门 FGSM 利用了梯度上升的思想,通过损失函数相对于输入图像的梯度来找到 最容易 迷惑网络的方向,并沿着这个方向对图像进行微小的扰动。 FGSM 的基本想法是,沿着这个梯度的符号方向对图像进行微调,以最大化损失函数。具…...

【八股文】小米

文章目录 一、vector 和 list 的区别?二、include 双引号和尖括号的区别?三、set 的底层数据结构?四、set 和 multiset 的区别?五、map 和 unordered_map 的区别?六、虚函数和纯虚函数的区别?七、extern C …...

xtu oj 众数

样例输入# 3 1 0 1 2 1 1 2 3 1 1 2 2样例输出# 1 2 3 解题思路:与数组大小有关,先排序 举个例子思考一下 n4 k2 数组为1 2 3 4 如果我们想让众数那个位的值为3(即max3),3出现的次数为3,即众数为3,需要修改多少次…...

ENVI计算ROI分离度为灰色compute roi separability

我们在使用ENVI做影像分类的时候,需要采集样本兴趣区(ROI),在采集完兴趣区需要计算样本ROI的分离度。 但是有时会发下你 计算ROI分离度的选项为灰色状态不能计算。 如果不是以下问题: “一个是必须首先选择或创建至少…...

Adaboost集成学习 | Python实现基于NuSVR-Adaboost多输入单输出回归预测

目录 效果一览基本介绍程序设计参考资料效果一览 基本介绍 基于NuSVR-Adaboost多输入单输出回归预测python代码 NuSVR是一种支持向量回归(SVR)算法的变体,用于解决回归问题。SVR是一种监督学习方法,它用于预测连续目标变量,而不是分类标签。NuSVR在SVR的基础上引入了一个…...

Python学习第十三天--面向对象,类和对象

一、面向过程和面向对象区别 面向过程:需要实现一个功能时,着重的是开发的步骤和过程,每个步都需要自己亲力亲为,需要编写代码(自己来做) 面向对象:需要实现一个功能时,不注重的是…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解

【关注我&#xff0c;后续持续新增专题博文&#xff0c;谢谢&#xff01;&#xff01;&#xff01;】 上一篇我们讲了&#xff1a; 这一篇我们开始讲&#xff1a; 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下&#xff1a; 一、场景操作步骤 操作步…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 思路 右视图是指从树的右侧看&#xff0c;对于每一层&#xff0c;只能看到该层最右边的节点。实现思路是&#xff1a; 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

【JavaSE】多线程基础学习笔记

多线程基础 -线程相关概念 程序&#xff08;Program&#xff09; 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序&#xff0c;比如我们使用QQ&#xff0c;就启动了一个进程&#xff0c;操作系统就会为该进程分配内存…...

Git常用命令完全指南:从入门到精通

Git常用命令完全指南&#xff1a;从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...

Qemu arm操作系统开发环境

使用qemu虚拟arm硬件比较合适。 步骤如下&#xff1a; 安装qemu apt install qemu-system安装aarch64-none-elf-gcc 需要手动下载&#xff0c;下载地址&#xff1a;https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/arm-gnu-toolchain-13.2.rel1-x…...

libfmt: 现代C++的格式化工具库介绍与酷炫功能

libfmt: 现代C的格式化工具库介绍与酷炫功能 libfmt 是一个开源的C格式化库&#xff0c;提供了高效、安全的文本格式化功能&#xff0c;是C20中引入的std::format的基础实现。它比传统的printf和iostream更安全、更灵活、性能更好。 基本介绍 主要特点 类型安全&#xff1a…...