数据结构-堆的实现和应用
目录
1.堆的概念
2.堆的构建
3.堆的实现
4.堆的功能实现
4.1堆的初始化
4.2堆的销毁
4.3堆的插入
4.3.1向上调整
4.4堆的删除
4.4.1向下调整法
编辑4.5取堆顶
5. 向上调整法和向下调整法比较
6.堆的应用
6.1TOP-K问题
6.2TOP-K思路
6.2.1用前n个数据来建堆
6.2.2剩下的N-K
6.3示例
1.堆的概念
堆的底层是数组,所以堆也是一种特殊的数组。
堆分为大堆和小堆
- 大堆:父节点不小于子节点
- 小堆:父节点不大于子节点
2.堆的构建
已经提到堆是一种数组,那么要怎么实现呢。
先以小堆为例,已知父节点不小于子节点,使用数组,数组下标0是根节点,1和2是他的子节点,接着1的子节点是3和4,2的子节点是5和6,这样就可以实现一个堆了。
3.堆的实现
既然是数组,就要有指针,容量大小。
4.堆的功能实现
4.1堆的初始化
4.2堆的销毁
4.3堆的插入
一直到这一步,都是和栈是相同的,因为我们插入数据了,这时我们无法保证这是一个堆,所以此时要进行向上调整。
4.3.1向上调整
因为此时插入是数据再最下面,所以要和上面的进行比较调整。
4.4堆的删除
我们是删除堆的最后一个元素,要怎么删除呢,我们可以将最后一个元素和第一个元素进行交换,然后使堆向下调整即可。
4.4.1向下调整法
4.5取堆顶
5. 向上调整法和向下调整法比较
推导时间复杂度,由于用图来表示有些难度,这里直接用笔写出来
这是向下调整法的推导过程
向下调整建堆的时间复杂度如图
下面是向上调整建堆的时间复杂度推导
总结:向上调整算法建堆是优于向下调整建堆的。
6.堆的应用
6.1TOP-K问题
这种问题通常是在较大的数据样本中取出其中的最值,这时就可以通过堆来完成。
通常这类问题样本较大,排序就不太可取,可以建堆来实现。
6.2TOP-K思路
6.2.1用前n个数据来建堆
求最大的前n个就建小堆
求最小的前n个就建大堆
6.2.2剩下的N-K
用剩下的N-K个数据来和堆顶数据比较,不满足就替换堆顶元素
6.3示例
#define _CRT_SECURE_NO_WARNINGS 1
#include"Heap.h"
#include<time.h>
void test()
{HP hp;HPInit(&hp);HPPush(&hp, 2);HPPush(&hp, 4);HPPush(&hp, 1);HPPush(&hp, 1); printf("%d", HPTop(&hp));}
void CreateNDate()
{int n = 10000;srand(time(0));const char* file = "data.txt";FILE* fin = fopen(file, "w");if (file == NULL){perror("fopen fail");return;}for (int i = 0; i < n; i++){int x = (rand() + i) % 1000000;fprintf(fin, "%d\n", x);}fclose(fin);
}
void topk()
{int k = 0;printf("输入k的值\n");scanf("%d", &k);const char* file = "data.txt";FILE* fout = fopen(file, "r");int* arr = (int*)malloc(sizeof(int) * k);for (int i = 0; i < k; i++){fscanf(fout, "%d", &arr[i]);}//建堆for (int i = (k - 1 - 1) / 2; i >= 0; i--){AdjustDown(arr, i, k);}int x = 0;while (fscanf(fout, "%d", &x) != EOF){if (x > arr[0]){arr[0] = x;AdjustDown(arr, 0, k);}}for (int i = 0; i < k; i++) {printf("%d ", arr[i]);}fclose(fout);
}int main()
{CreateNDate();topk();return 0;
}
相关文章:

数据结构-堆的实现和应用
目录 1.堆的概念 2.堆的构建 3.堆的实现 4.堆的功能实现 4.1堆的初始化 4.2堆的销毁 4.3堆的插入 4.3.1向上调整 4.4堆的删除 4.4.1向下调整法 编辑4.5取堆顶 5. 向上调整法和向下调整法比较 6.堆的应用 6.1TOP-K问题 6.2TOP-K思路 6.2.1用前n个数据来建堆 6.…...

数据分析的尽头是web APP?
数据分析的尽头是web APP? 在做了一些数据分析的项目,也制作了一些数据分析相关的web APP之后,总结自己的一些想法和大家分享。 1.web APP是呈现数据分析结果的另外一种形式。 数据分析常见的结果是数据分析报告,可以是PPT或者…...

YOLO系列论文综述(从YOLOv1到YOLOv11)【第3篇:YOLOv1——YOLO的开山之作】
YOLOv1 1 摘要2 YOLO: You Only Look Once2.1 如何工作2.2 网络架构2.3 训练2.4 优缺点 YOLO系列博文: 【第1篇:概述物体检测算法发展史、YOLO应用领域、评价指标和NMS】【第2篇:YOLO系列论文、代码和主要优缺点汇总】 ——————————…...
容器和它的隔离机制
什么是容器和它的隔离机制? 容器 是一种轻量化的虚拟化技术,它允许多个应用程序共享同一个操作系统(OS)内核,同时为每个应用程序提供自己的运行环境。容器通过利用 Linux 的内核功能(如 Namespaces 和 Cgr…...

【数据结构与算法】排序算法总结:冒泡 / 快排 / 直接插入 / 希尔 / 简单选择 / 堆排序 / 归并排序
1 排序 1.1 冒泡 内排序的交换排序类别 1.1.1 普通实现 public class BubbleSort {/*** 基本的 冒泡排序*/public static void bubbleSort(int[] srcArray) {int i,j; // 用于存放数组下标int temp 0; // 用于交换数值时临时存放值for(i0;i<srcArray.length-1;i){// j …...

Windows Serv 2019 虚拟机 安装Oracle19c,图文详情(超详细)
1、下载安装文件 Oracle官网下载直链:https://www.oracle.com/database/technologies/oracle-database-software-downloads.html#db_ee 夸克网盘下载:https://pan.quark.cn/s/1460a663ee83 2、新建 Windows Server 2019 虚拟机 (超详细&a…...

数字孪生开发之 Three.js 插件资源库(2)
在当今数字化快速发展的时代,数字孪生技术正逐渐成为各个领域的关键技术之一。它通过创建物理实体的虚拟副本,实现对实体的实时监测、模拟和优化,为企业和组织带来了诸多好处,如提高生产效率、降低成本、改进产品质量等。然而&…...
小米C++ 面试题及参考答案下(120道面试题覆盖各种类型八股文)
指针和引用的区别?怎么实现的? 指针和引用有以下一些主要区别。 从概念上来说,指针是一个变量,它存储的是另一个变量的地址。可以通过指针来间接访问所指向的变量。例如,我们定义一个整型指针int *p;,它可以指向一个整型变量的内存地址。而引用是一个别名,它必须在定义的…...

OpenOCD之J-Link下载
NOTE:此篇文章由笔者的 VSCode编辑GCC for ARM交叉编译工具链Makefile构建OpenOCD调试(基于STM32的标准库)派生而来。 1.下载USB Dirver Tool.exe,选择J-Link dirver,替换成WinUSB驱动。(⭐USB Dirver Tool…...

华为云云连接+squid进行正向代理上网冲浪
1 概述 Squid是一个高性能的代理缓存服务器,主要用于缓冲Internet数据。它支持多种协议,包括FTP、gopher、HTTPS和HTTP。Squid通过一个单独的、非模块化的、I/O驱动的进程来处理所有的客户端请求,这使得它在处理请求时具有较高的效率。…...
情绪识别项目
文章目录 1、mp4s文件转mp3文件2、Audition下载3、Audition安装4、Audition使用: 1、mp4s文件转mp3文件 在线转:Convert audio to MP3(https://audio.online-convert.com/convert-to-mp3) 2、Audition下载 Audition CC2019/64位…...
【RISC-V CPU debug 专栏 2.2 -- Hart DM States】
文章目录 Hart DM StatesHart 的 DM 状态1. 不存在(Non-existent)2. 不可用(Unavailable)3. 运行(Running)4. 暂停(Halted)状态转换与复位行为状态指示信号Hart DM States 在 RISC-V 调试架构中,每个可以被选择的硬件线程(hart)处于以下四种调试模块(DM)状态之一…...
从零样本到少样本学习:一文读懂 Zero-shot、One-shot 和 Few-shot 的核心原理与应用!
爆款标题: 《从零样本到少样本学习:一文读懂 Zero-shot、One-shot 和 Few-shot 的核心原理与应用!》 正文: 在自然语言处理(NLP)领域,Zero-shot、One-shot 和 Few-shot 学习已经成为衡量大语言…...
【LC】3101. 交替子数组计数
题目描述: 给你一个二进制数组nums 。如果一个子数组中 不存在 两个 相邻 元素的值 相同 的情况,我们称这样的子数组为 交替子数组 。返回数组 nums 中交替子数组的数量。 示例 1: 输入: nums [0,1,1,1] 输出: 5 …...

如何构建SAAS项目
在后台使用JDBC方式动态创建用户输入的数据库信息(库名、地址、用户名、密码) 执行预先写好的sql文件(如mybatis的scriptRunner)执行建表语句及插入基础数据(管理员用户、普通用户)...

树莓派搭建NextCloud:给数据一个安全的家
前言 NAS有很多方案,常见的有 Nextcloud、Seafile、iStoreOS、Synology、ownCloud 和 OpenMediaVault ,以下是他们的特点: 1. Nextcloud 优势: 功能全面:支持文件同步、共享、在线文档编辑、视频会议、日历、联系人…...
深入解读 MongoDB 查询耗时:Execution 和 Fetching 阶段详解
在使用 MongoDB 时,查询性能的分析与优化是开发者关注的重点。MongoDB 的查询过程通常分为两个主要阶段:Execution(执行阶段)和Fetching(拉取阶段)。每个阶段的耗时代表不同的性能瓶颈,优化思路…...
frida_hook_dlopen(当年到lib目录下找发现一个so都没有,hook下dlopen)
Frida 脚本用于拦截 Android 应用程序中的 dlopen 和 android_dlopen_ext 函数。这两个函数用于动态加载共享库,脚本通过拦截这些函数的调用来记录加载的库的路径。 代码分析 var dlopen Module.findExportByName(null, "dlopen"); // 6.0 var android…...

Zero to JupyterHub with Kubernetes中篇 - Kubernetes 常规使用记录
前言:纯个人记录使用。 搭建 Zero to JupyterHub with Kubernetes 上篇 - Kubernetes 离线二进制部署。搭建 Zero to JupyterHub with Kubernetes 中篇 - Kubernetes 常规使用记录。搭建 Zero to JupyterHub with Kubernetes 下篇 - Jupyterhub on k8s。 参考&…...

WordCloud去掉停用词(fit_words+generate)的2种用法
-------------词云图集合------------- WordCloud去掉停用词(fit_wordsgenerate)的2种用法 通过词频来绘制词云图(jiebaWordCloud) Python教程95:去掉停用词词频统计jieba.tokenize示例用法 将进酒—李白process_t…...
Linux简单的操作
ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

跨链模式:多链互操作架构与性能扩展方案
跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层…...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...

用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)
漏洞概览 漏洞名称:Apache Flink REST API 任意文件读取漏洞CVE编号:CVE-2020-17519CVSS评分:7.5影响版本:Apache Flink 1.11.0、1.11.1、1.11.2修复版本:≥ 1.11.3 或 ≥ 1.12.0漏洞类型:路径遍历&#x…...

毫米波雷达基础理论(3D+4D)
3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文: 一文入门汽车毫米波雷达基本原理 :https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...
人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent
安全大模型训练计划:基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标:为安全大模型创建高质量、去偏、符合伦理的训练数据集,涵盖安全相关任务(如有害内容检测、隐私保护、道德推理等)。 1.1 数据收集 描…...

关于easyexcel动态下拉选问题处理
前些日子突然碰到一个问题,说是客户的导入文件模版想支持部分导入内容的下拉选,于是我就找了easyexcel官网寻找解决方案,并没有找到合适的方案,没办法只能自己动手并分享出来,针对Java生成Excel下拉菜单时因选项过多导…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!
本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...

实战设计模式之模板方法模式
概述 模板方法模式定义了一个操作中的算法骨架,并将某些步骤延迟到子类中实现。模板方法使得子类可以在不改变算法结构的前提下,重新定义算法中的某些步骤。简单来说,就是在一个方法中定义了要执行的步骤顺序或算法框架,但允许子类…...