当前位置: 首页 > news >正文

【ROS2】ROS2 与 ROS1 编码方式对比(Python实现)

目录

  • 一、初始化和关闭节点
  • 二、发布者
  • 三、订阅者
  • 四、服务端
  • 五、客户端
  • 六、参数管理
  • 七、日志记录
  • 八、生命周期管理

ROS2 在 Python 编程中引入了一些新的概念和 API,这些变化使得代码更加模块化和易于维护。特别是 rclpy 库提供了更丰富的功能和更好的错误处理机制,同时支持异步编程模型。如果你已经熟悉 ROS1 的 Python 编程,这些变化应该不会太难适应。

一、初始化和关闭节点

ROS1:

import rospydef main():rospy.init_node('my_node', anonymous=True)# 节点逻辑rospy.spin()if __name__ == '__main__':main()

ROS2:

import rclpy
from rclpy.node import Nodeclass MyNode(Node):def __init__(self):super().__init__('my_node')# 节点逻辑def main(args=None):rclpy.init(args=args)node = MyNode()rclpy.spin(node)node.destroy_node()rclpy.shutdown()if __name__ == '__main__':main()

二、发布者

ROS1:

import rospy
from std_msgs.msg import Stringdef talker():pub = rospy.Publisher('chatter', String, queue_size=10)rospy.init_node('talker', anonymous=True)rate = rospy.Rate(10)  # 10 Hzwhile not rospy.is_shutdown():hello_str = "hello world %s" % rospy.get_time()rospy.loginfo(hello_str)pub.publish(hello_str)rate.sleep()if __name__ == '__main__':try:talker()except rospy.ROSInterruptException:pass

ROS2:

import rclpy
from rclpy.node import Node
from std_msgs.msg import Stringclass Talker(Node):def __init__(self):super().__init__('talker')self.publisher_ = self.create_publisher(String, 'chatter', 10)timer_period = 1  # secondsself.timer = self.create_timer(timer_period, self.timer_callback)def timer_callback(self):msg = String()msg.data = f'Hello World {self.get_clock().now().nanoseconds // 1000000}'self.get_logger().info(f'Publishing: "{msg.data}"')self.publisher_.publish(msg)def main(args=None):rclpy.init(args=args)node = Talker()rclpy.spin(node)node.destroy_node()rclpy.shutdown()if __name__ == '__main__':main()

三、订阅者

ROS1:

import rospy
from std_msgs.msg import Stringdef callback(data):rospy.loginfo(rospy.get_caller_id() + " I heard %s", data.data)def listener():rospy.init_node('listener', anonymous=True)rospy.Subscriber('chatter', String, callback)rospy.spin()if __name__ == '__main__':listener()

ROS2:

import rclpy
from rclpy.node import Node
from std_msgs.msg import Stringclass Listener(Node):def __init__(self):super().__init__('listener')self.subscription = self.create_subscription(String, 'chatter', self.listener_callback, 10)self.subscription  # prevent unused variable warningdef listener_callback(self, msg):self.get_logger().info(f'I heard: "{msg.data}"')def main(args=None):rclpy.init(args=args)node = Listener()rclpy.spin(node)node.destroy_node()rclpy.shutdown()if __name__ == '__main__':main()

四、服务端

ROS1:

import rospy
from std_srvs.srv import AddTwoIntsdef handle_add_two_ints(req):rospy.loginfo(f"Returning [{req.a} + {req.b} = {req.a + req.b}]")return AddTwoIntsResponse(req.a + req.b)def add_two_ints_server():rospy.init_node('add_two_ints_server')s = rospy.Service('add_two_ints', AddTwoInts, handle_add_two_ints)rospy.spin()if __name__ == "__main__":add_two_ints_server()

ROS2:

import rclpy
from rclpy.node import Node
from example_interfaces.srv import AddTwoIntsclass AddTwoIntsService(Node):def __init__(self):super().__init__('add_two_ints_server')self.srv = self.create_service(AddTwoInts, 'add_two_ints', self.add_two_ints_callback)def add_two_ints_callback(self, request, response):response.sum = request.a + request.bself.get_logger().info(f'Returning [{request.a} + {request.b} = {response.sum}]')return responsedef main(args=None):rclpy.init(args=args)node = AddTwoIntsService()rclpy.spin(node)node.destroy_node()rclpy.shutdown()if __name__ == '__main__':main()

五、客户端

ROS1:

import rospy
from std_srvs.srv import AddTwoIntsdef add_two_ints_client(x, y):rospy.wait_for_service('add_two_ints')try:add_two_ints = rospy.ServiceProxy('add_two_ints', AddTwoInts)resp1 = add_two_ints(x, y)return resp1.sumexcept rospy.ServiceException as e:print(f"Service call failed: {e}")if __name__ == "__main__":rospy.init_node('add_two_ints_client')x = 1y = 2print(f"Requesting {x}+{y}")print(f"{x} + {y} = {add_two_ints_client(x, y)}")

ROS2:

import rclpy
from rclpy.node import Node
from example_interfaces.srv import AddTwoIntsclass AddTwoIntsClient(Node):def __init__(self):super().__init__('add_two_ints_client')self.cli = self.create_client(AddTwoInts, 'add_two_ints')while not self.cli.wait_for_service(timeout_sec=1.0):self.get_logger().info('service not available, waiting again...')self.req = AddTwoInts.Request()def send_request(self, a, b):self.req.a = aself.req.b = bself.future = self.cli.call_async(self.req)def main(args=None):rclpy.init(args=args)node = AddTwoIntsClient()node.send_request(16, 2)while rclpy.ok():rclpy.spin_once(node)if node.future.done():try:response = node.future.result()except Exception as e:node.get_logger().info(f'Service call failed {e}')else:node.get_logger().info(f'Result of add_two_ints: {response.sum}')breaknode.destroy_node()rclpy.shutdown()if __name__ == '__main__':main()

六、参数管理

ROS1:

在ROS1中,参数管理是通过全局参数服务器来实现的。

import rospydef main():rospy.init_node('my_node', anonymous=True)# 获取参数param_value = rospy.get_param('param_name', 'default_value')rospy.loginfo(f"Parameter value: {param_value}")# 设置参数rospy.set_param('param_name', 'new_value')if __name__ == '__main__':main()

ROS2:

在ROS2中,参数管理更加灵活,支持类型安全的参数接口和参数描述符。

import rclpy
from rclpy.node import Nodeclass MyNode(Node):def __init__(self):super().__init__('my_node')# 获取参数param_value = self.get_parameter('param_name').get_parameter_value().string_valueself.get_logger().info(f"Parameter value: {param_value}")# 设置参数self.set_parameters([rclpy.parameter.Parameter('param_name', rclpy.Parameter.Type.STRING, 'new_value')])def main(args=None):rclpy.init(args=args)node = MyNode()rclpy.spin(node)node.destroy_node()rclpy.shutdown()if __name__ == '__main__':main()

七、日志记录

ROS1:

在ROS1中,日志记录使用 rospy 提供的函数。

import rospydef main():rospy.init_node('my_node', anonymous=True)rospy.loginfo("This is an info message.")rospy.logwarn("This is a warning message.")rospy.logerr("This is an error message.")rospy.logfatal("This is a fatal message.") if __name__ == '__main__':main()

ROS2:

在ROS2中,日志记录使用 rclpy 提供的函数。

import rclpy
from rclpy.node import Nodeclass MyNode(Node):def __init__(self):super().__init__('my_node')self.get_logger().info("This is an info message.")self.get_logger().warning("This is a warning message.")self.get_logger().error("This is an error message.")self.get_logger().fatal("This is a fatal message.")def main(args=None):rclpy.init(args=args)node = MyNode()rclpy.spin(node)node.destroy_node()rclpy.shutdown()if __name__ == '__main__':main()

八、生命周期管理

ROS1:

ROS1没有内置的生命周期管理功能,通常需要开发者自己实现节点的生命周期管理。

ROS2:

ROS2引入了生命周期管理,允许更精细地控制节点的启动和停止过程。

import rclpy
from rclpy.lifecycle import Node, State, TransitionCallbackReturn
from rclpy.node import Node as BaseNodeclass LifecycleNode(Node):def __init__(self):super().__init__('lifecycle_node')def on_configure(self, state: State) -> TransitionCallbackReturn:self.get_logger().info('on_configure() is called.')return TransitionCallbackReturn.SUCCESSdef on_activate(self, state: State) -> TransitionCallbackReturn:self.get_logger().info('on_activate() is called.')return TransitionCallbackReturn.SUCCESSdef on_deactivate(self, state: State) -> TransitionCallbackReturn:self.get_logger().info('on_deactivate() is called.')return TransitionCallbackReturn.SUCCESSdef on_cleanup(self, state: State) -> TransitionCallbackReturn:self.get_logger().info('on_cleanup() is called.')return TransitionCallbackReturn.SUCCESSdef on_shutdown(self, state: State) -> TransitionCallbackReturn:self.get_logger().info('on_shutdown() is called.')return TransitionCallbackReturn.SUCCESSdef main(args=None):rclpy.init(args=args)node = LifecycleNode()executor = rclpy.executors.SingleThreadedExecutor()executor.add_node(node)try:executor.spin()except KeyboardInterrupt:passnode.on_shutdown(State(id=9, label='unconfigured'))node.destroy_node()rclpy.shutdown()if __name__ == '__main__':main()


欢迎大家加QQ群,一起讨论学习:894013891

相关文章:

【ROS2】ROS2 与 ROS1 编码方式对比(Python实现)

目录 一、初始化和关闭节点二、发布者三、订阅者四、服务端五、客户端六、参数管理七、日志记录八、生命周期管理 ROS2 在 Python 编程中引入了一些新的概念和 API,这些变化使得代码更加模块化和易于维护。特别是 rclpy 库提供了更丰富的功能和更好的错误处理机制&a…...

ElasticSearch的下载和基本使用(通过apifox)

1.概述 一个开源的高扩展的分布式全文检索引擎,近乎实时的存储,检索数据 2.安装路径 Elasticsearch 7.8.0 | Elastic 安装后启动elasticsearch-7.8.0\bin里的elasticsearch.bat文件, 启动后就可以访问本地的es库http://localhost:9200/ …...

城市轨道交通运营控制指挥中心设计方案

为某城市轨道交通运营控制指挥中心(OCC)的设计提供方案时,我们需要考虑到多个方面的需求,包括系统架构、设备选择、功能实现、数据流与监控、通信管理等。以下是一个综合性的设计方案,涉及系统硬件和软件的选择、布局规划、安全性等方面,以确保指挥中心的高效运作、实时监…...

多目标优化算法:多目标河马优化算法(MOHOA)求解ZDT1、ZDT2、ZDT3、ZDT4、ZDT6,提供完整MATLAB代码

一、河马优化算法 河马优化算法(Hippopotamus optimization algorithm,HO)由Amiri等人于2024年提出的一种模拟自然界中河马觅食行为的新型群体智能优化算法。该算法由Mohammad Hussein Amiri等人于2024年2月发表在Nature旗下子刊《Scientifi…...

线程与进程的个人理解

进程(Process): 一个程序在执行时,操作系统为其分配的资源(如内存、CPU 时间等)构成了一个进程。每个进程都有自己的独立的地址空间、堆栈和局部变量,它们之间不共享内存(除非通过特…...

vscode的项目给gitlab上传

目录 一.创建gitlab帐号 二.在gitlab创建项目仓库 三.Windows电脑安装Git 四.vscode项目git上传 一.创建gitlab帐号 二.在gitlab创建项目仓库 图来自:Git-Gitlab中如何创建项目、创建Repository、以及如何删除项目_gitlab新建项目-CSDN博客) 三.Windows电脑安…...

企业微信定位打卡

废话少说:定位修改软件链接奉上 一、定位打卡原理 GPS定位:企业微信可以利用手机的GPS功能进行定位,这是一种基于卫星的定位技术,能够提供相对精确的位置信息,通常精确度在20米以内。这种方式耗电较大,且在…...

libaom 源码分析:码率控制介绍

码率控制 命令行码率控制选项:可以看到码率控制包括丢帧、resize、超分、码控模式、目标码率、目标上限下限(类似 x264、x265 中的 VBV)、码控偏置、GOP 码率等。Rate Control Options:--drop-frame=<arg> Temporal resampling threshold (buf %)--resize-mo…...

RK3568平台开发系列讲解(DMA篇)DMA engine使用

🚀返回专栏总目录 文章目录 一、申请DMA channel二、配置DMA channel的参数三、获取传输描述(tx descriptor)四、启动传输沉淀、分享、成长,让自己和他人都能有所收获!😄 📢DMA子系统下有一个帮助测试的测试驱动(drivers/dma/dmatest.c), 从这个测试驱动入手我们了解…...

C++中的函数对象

C 中函数对象的定义和特点 定义&#xff1a;函数对象&#xff08;Function Object&#xff09;也叫仿函数&#xff08;Functor&#xff09;&#xff0c;是一个类&#xff0c;这个类重载了函数调用运算符()。当创建这个类的对象后&#xff0c;可以像使用函数一样使用这个对象&am…...

Linux指标之平均负载(The Average load of Linux Metrics)

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:Linux运维老纪的首页…...

盛最多水的容器

本节将数组与坐标轴共同组成一个容器,通过改变容器的两个端点使容器装的水最多,容器两个端点不断移动可以通过左右指针算法解决. 问题描述: 给定两个非负整数k1,k2...km每个数代表坐标中的一个点(i,ki).在坐标内绘制m条垂线,垂直线i的两个端点分别为(i,k1)和(i,0)找出其中的两…...

光伏功率预测!Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN五模型时序预测

目录 预测效果基本介绍程序设计参考资料 预测效果 基本介绍 Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN五模型多变量时序光伏功率预测 (Matlab2023b 多输入单输出) 1.程序已经调试好&#xff0c;替换数据集后&#xff0c;仅运行一个main即可运行&#xff0c;数据格式…...

java全栈day10--后端Web基础(基础知识)

引言&#xff1a;只要能通过浏览器访问的网站全是B/S架构&#xff0c;其中最常用的服务器就是Tomcat 在浏览器与服务器交互的时候采用的协议是HTTP协议 一、Tomcat服务器 1.1介绍 官网地址&#xff1a;Apache Tomcat - Welcome! 1.2基本使用(网上有安装教程&#xff0c;建议…...

使用爬虫时,如何确保数据的准确性?

在数字化时代&#xff0c;数据的准确性对于决策和分析至关重要。本文将探讨如何在使用Python爬虫时确保数据的准确性&#xff0c;并提供代码示例。 1. 数据清洗 数据清洗是确保数据准确性的首要步骤。在爬取数据后&#xff0c;需要对数据进行清洗&#xff0c;去除重复、无效和…...

Burp入门(4)-扫描功能介绍

声明&#xff1a;学习视频来自b站up主 泷羽sec&#xff0c;如涉及侵权马上删除文章 感谢泷羽sec 团队的教学 视频地址&#xff1a;burp功能介绍&#xff08;1&#xff09;_哔哩哔哩_bilibili 本文介绍burp的主动扫描和被动扫描功能。 一、主动扫描 工作原理&#xff1a; 主动…...

Tourtally:颠覆传统的AI智能旅行规划革命

# Tourtally&#xff1a;颠覆传统的AI智能旅行规划革命 在快速变化的旅行科技世界里&#xff0c;一个划时代的平台正在重新定义我们探索世界的方式。让我们一起认识 Tourtally&#xff0c;这个由人工智能驱动的旅行规划助手&#xff0c;正在彻底改变旅行体验。 ## 旅行规划的…...

chrome允许http网站打开摄像头和麦克风

第一步 chrome://flags/#unsafely-treat-insecure-origin-as-secure 第二步 填入网址&#xff0c;点击启用 第三步 重启 Chrome&#xff1a;设置完成后&#xff0c;点击页面底部的 “Relaunch” 按钮&#xff0c;重新启动 Chrome 浏览器&#xff0c;使更改生效。...

视觉经典神经网络与复现:深入解析与实践指南

目录 引言 经典视觉神经网络模型详解 1. LeNet-5&#xff1a;卷积神经网络的先驱 LeNet-5的关键特点&#xff1a; 2. AlexNet&#xff1a;深度学习的突破 AlexNet的关键特点&#xff1a; 3. VGGNet&#xff1a;深度与简洁的平衡 VGGNet的关键特点&#xff1a; 4. ResNe…...

ByConity ELT 测试体验

在实际业务中&#xff0c;用户会基于不同的产品分别构建实时数仓和离线数仓。其中&#xff0c;实时数仓强调数据能够快速入库&#xff0c;且在入库的第一时间就可以进行分析&#xff0c;低时延的返回分析结果。而离线数仓强调复杂任务能够稳定的执行完&#xff0c;需要更好的内…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器

——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的​​一体化测试平台​​&#xff0c;覆盖应用全生命周期测试需求&#xff0c;主要提供五大核心能力&#xff1a; ​​测试类型​​​​检测目标​​​​关键指标​​功能体验基…...

【JVM】- 内存结构

引言 JVM&#xff1a;Java Virtual Machine 定义&#xff1a;Java虚拟机&#xff0c;Java二进制字节码的运行环境好处&#xff1a; 一次编写&#xff0c;到处运行自动内存管理&#xff0c;垃圾回收的功能数组下标越界检查&#xff08;会抛异常&#xff0c;不会覆盖到其他代码…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

python如何将word的doc另存为docx

将 DOCX 文件另存为 DOCX 格式&#xff08;Python 实现&#xff09; 在 Python 中&#xff0c;你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是&#xff0c;.doc 是旧的 Word 格式&#xff0c;而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...