当前位置: 首页 > news >正文

环形链表系列导学

问题描述

给定一个单链表,可能存在一个环。我们的目标是找到环的入口节点,即从这个节点开始,链表进入循环。如果没有环,则返回 null

将链表问题转化为数学问题

状态序列与循环

我们可以将链表节点视为状态,每个节点的 next 指针代表状态转移函数 f f f。从头节点开始,我们可以得到一个状态序列:

  • x 0 , x 1 = f ( x 0 ) , x 2 = f ( x 1 ) , x 3 = f ( x 2 ) , … x_0, x_1 = f(x_0), x_2 = f(x_1), x_3 = f(x_2), \ldots x0,x1=f(x0),x2=f(x1),x3=f(x2),

如果链表中存在环,那么这个序列将出现循环

寻找循环起点

我们的目标是找到状态序列中最小的 μ \mu μ,使得对于某个最小的 λ \lambda λ,满足:

  • x μ = x μ + λ x_{\mu} = x_{\mu + \lambda} xμ=xμ+λ

其中:

  • μ \mu μ循环的起始位置(环的入口)
  • λ \lambda λ循环节的长度(环的长度)

Floyd 判圈算法的数学原理

阶段一:检测循环

使用两个指针:

  • 慢指针(slow):每次移动一步
  • 快指针(fast):每次移动两步

阶段二:找到循环的起始位置

数学推导

设:

  • 非环部分长度 a a a
  • 环的长度 b b b
  • 从环入口到相遇点的距离 c c c
  • 快指针在环内绕行的圈数 k k k ( k ≥ 1 k \geq 1 k1)
距离关系
  • 慢指针走的总距离
    D slow = a + c D_{\text{slow}} = a + c Dslow=a+c

  • 快指针走的总距离
    D fast = a + c + k × b D_{\text{fast}} = a + c + k \times b Dfast=a+c+k×b

  • 由于快指针速度是慢指针的两倍:
    D fast = 2 × D slow D_{\text{fast}} = 2 \times D_{\text{slow}} Dfast=2×Dslow

推导步骤
  1. 建立等式
    a + c + k × b = 2 × ( a + c ) a + c + k \times b = 2 \times (a + c) a+c+k×b=2×(a+c)

  2. 化简
    a + c + k × b = 2 a + 2 c a + c + k \times b = 2a + 2c a+c+k×b=2a+2c
    k × b = 2 a + 2 c − a − c k \times b = 2a + 2c - a - c k×b=2a+2cac
    k × b = a + c k \times b = a + c k×b=a+c

  3. 得出关系式
    a + c = k × b a + c = k \times b a+c=k×b

寻找环的入口
  • 快指针走了 a a a 步到达环入口
  • 慢指针从相遇点再走 b − c b - c bc 步也到达环入口

因为:
b − c = b − ( k × b − a ) = − ( k − 1 ) × b + a b - c = b - (k \times b - a) = - (k - 1) \times b + a bc=b(k×ba)=(k1)×b+a

具体例子

假设:

  • 非环部分长度 a = 3 a = 3 a=3
  • 环的长度 b = 4 b = 4 b=4
  • 快指针在环内绕行的圈数 k = 1 k = 1 k=1

根据推导:
a + c = k × b ⟹ c = k × b − a = 1 × 4 − 3 = 1 a + c = k \times b \implies c = k \times b - a = 1 \times 4 - 3 = 1 a+c=k×bc=k×ba=1×43=1

  • 慢指针走的总距离
    D slow = a + c = 3 + 1 = 4 D_{\text{slow}} = a + c = 3 + 1 = 4 Dslow=a+c=3+1=4

  • 快指针走的总距离
    D fast = 2 × D slow = 8 D_{\text{fast}} = 2 \times D_{\text{slow}} = 8 Dfast=2×Dslow=8

验证快指针的距离:
D fast = a + c + k × b = 3 + 1 + 1 × 4 = 8 D_{\text{fast}} = a + c + k \times b = 3 + 1 + 1 \times 4 = 8 Dfast=a+c+k×b=3+1+1×4=8

相关文章:

环形链表系列导学

问题描述 给定一个单链表,可能存在一个环。我们的目标是找到环的入口节点,即从这个节点开始,链表进入循环。如果没有环,则返回 null。 将链表问题转化为数学问题 状态序列与循环 我们可以将链表节点视为状态,每个节点的 next 指针代表状态转移函数 f f f。从头节点开始,我…...

IDEA2024创建一个spingboot项目

以下是创建一个基本的 Spring Boot 项目的步骤和示例: 初始化一个springboot工程其实有许多方法,笔者这里挑了一个最快捷的方式搭建一个项目。我们直接通过官方平台(start.spring.io)进行配置,然后下载压缩包就可以获取…...

Nginx:ssl

目录 部署ssl前提 nginx部署ssl证书 部署ssl部署建议 部署ssl前提 网站有域名根据域名申请到ssl证书,并下载证书部署到nginx中 部署了ssl证书后,访问的流量是加密的。 nginx部署ssl证书 #80端口跳转到443 server {listen 80;return 302 https://1…...

QT配置文件详解

TEMPLATElib TEMPLATE变量用于指定项目模板类型,其值可以是以下几种: app:建立一个应用程序的makefile,这是默认值。lib:建立一个库的makefile。vcapp:建立一个应用程序的Visual Studio项目文件。vclib&a…...

根据合约地址判断合约协议的方法

判断合约协议之前,需要了解一下什么是ERC165协议: ERC165 是以太坊中用于标准化接口检测的协议,由 Fabian Vogelsteller 在 2018 年创建 ,其核心内容主要包括以下方面: 接口定义 单一函数接口:ERC165 协议…...

联想YOGA Pro 14s至尊版电脑找不到独立显卡(N卡)问题,也无法安装驱动的问题

问题描述 电脑是联想YOGA Pro 14s至尊版,电脑上装的独立显卡是4060,一直是能够使用独立显卡的。然而有两次突然就找不到显卡了,NVIDIA CONTROL PANEL也消失了,而且也无法安装驱动。具体表现如下: 无法连接外接显示器…...

Spring Web开发注解和请求(1)

大家好我是小帅,今天我们来学习Spring Web MVC框架(入门级) 文章目录 1. 什么是 Spring Web MVC?1.1 MVC 定义1.2 什么是Spring MVC ? 2. 学习Spring MVC2.1 建⽴连接第一个spring MVC程序 3. web开发注解的解释3.1RestControlle…...

Supervisor使用教程

文章目录 [toc] Supervisor使用教程平台要求 安装supervisor本文测试的时候是使用Linux的yum安装的(其它方式未做测试)加入系统守护进行 Supervisor使用教程 在项目中,经常有脚本需要常驻运行的需求。以PHP脚本为例,最简单的方式…...

Spark基本命令详解

文章目录 Spark基本命令详解一、引言二、Spark Core 基本命令1、Transformations(转换操作)1.1、groupBy(func)1.2、filter(func) 2、Actions(动作操作)2.1、distinct([numTasks])2.2、sortBy(func, [ascending], [numTasks]) 三、…...

Three.js 相机视角的平滑过渡与点击模型切换视角

在 Three.js 中,实现相机视角的平滑过渡和点击模型切换到查看模型视角是一个常见且有用的功能。这种效果不仅能提升用户体验,还能为场景互动添加更多的动态元素。 1. 基本设置 首先,我们需要创建一个基本的 Three.js 场景,包括相…...

jenken 打包linux包遇到的问题(环境变量)

环境变量问题 我们jenkens 打包的时候 远程打包 通过ssh 去在服务器上调用脚本 环境变量没有去自动加载 代码打包的时候总是提示相关的so文件找不到 解决方案在 相关程序的make之前 把环境变量加在前面 我这里直接将变量加载代码的最前面...

使用 Go 语言中的 Context 取消协程执行

使用 Go 语言中的 Context 取消协程执行 在 Go 语言中,协程(goroutine)是一种轻量级的线程,非常适合处理并发任务。然而,如何优雅地取消正在运行的协程是一个常见的问题。本文将通过一个具体的例子来展示如何使用 con…...

python图像彩色数字化

效果展示&#xff1a; 目录结构&#xff1a; alphabets.py GENERAL {"simple": "%#*-:. ","complex": "$B%8&WM#*oahkbdpqwmZO0QLCJUYXzcvunxrjft/\|()1{}[]?-_~<>i!lI;:,\"^. " } # Full list could be found here…...

cesium 3dtile ClippingPlanes 多边形挖洞ClippingPlaneCollection

原理就是3dtiles里面的属性clippingPlanes 采用ClippingPlaneCollection&#xff0c;构成多边形来挖洞。 其次就是xyz法向量挖洞 clippingPlanes: new this.ffCesium.Cesium.ClippingPlaneCollection({unionClippingRegions: true, // true 表示多个切割面能合并为一个有效的…...

docker 僵尸进程问题

docker僵尸进程 子进程结束后&#xff0c;父进程没有回收该进程资源&#xff08;父进程可能没有wait&#xff09;&#xff0c;子进程残留资源存放与内核中&#xff0c;就变为僵尸进程(zombie) 场景分析&#xff1a;python脚本A中执行B应用&#xff0c;将A部署在docker中&#…...

微软要求 Windows Insider 用户试用备受争议的召回功能

拥有搭载 Qualcomm Snapdragon 处理器的 Copilot PC 的 Windows Insider 计划参与者现在可以试用 Recall&#xff0c;这是一项臭名昭著的快照拍摄 AI 功能&#xff0c;在今年早些时候推出时受到了很多批评。 Windows 营销高级总监 Melissa Grant 上周表示&#xff1a;“我们听…...

husky,commit规范,生成CHANGELOG.md,npm发版

项目git提交工程化&#xff08;钩子&#xff0c;提交信息commit message&#xff09;&#xff0c;npm修改版本&#xff0c;需要涉及到的包&#xff1a; husky&#xff0c;允许在git钩子中执行不同的脚步&#xff0c;如commitlint&#xff0c;eslint&#xff0c;prettier&#…...

DETR:一种新颖的端到端目标检测与分割框架

DETR&#xff1a;一种新颖的端到端目标检测与分割框架 摘要&#xff1a; 随着深度学习技术的发展&#xff0c;目标检测和图像分割任务取得了显著的进步。然而&#xff0c;传统的基于区域提名的方法在处理这些问题时存在一定的局限性。为此&#xff0c;Facebook AI Research&am…...

前端js面试知识点思维导图(脑图)

如果看着不清晰可以去https://download.csdn.net/download/m0_73761441/90058523访问下载&#xff0c;无需积分 使用百度脑图制作&#xff0c;可以一键导入下面的文本生成自己的脑图 js相关面试题、知识点 数据类型 1. 数据类型分类&#xff1f;分别包含&#xff…...

【Java基础入门篇】一、变量、数据类型和运算符

Java基础入门篇 一、变量、数据类型和运算符 1.1 变量 计算机中的数据表示方式是&#xff1a;“二进制(0/1)”&#xff0c;但是同时也可以兼容其他进制&#xff0c;例如八进制、十进制、十六进制等。 Java变量的本质是&#xff1a;存储在固定空间的内容&#xff0c;变量名是…...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统

医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上&#xff0c;开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识&#xff0c;在 vs 2017 平台上&#xff0c;进行 ASP.NET 应用程序和简易网站的开发&#xff1b;初步熟悉开发一…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)

概述 在 Swift 开发语言中&#xff0c;各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过&#xff0c;在涉及到多个子类派生于基类进行多态模拟的场景下&#xff0c;…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store&#xff1a; 我们在使用异步的时候理应是要使用中间件的&#xff0c;但是configureStore 已经自动集成了 redux-thunk&#xff0c;注意action里面要返回函数 import { configureS…...

Python爬虫实战:研究Restkit库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的有价值数据。如何高效地采集这些数据并将其应用于实际业务中,成为了许多企业和开发者关注的焦点。网络爬虫技术作为一种自动化的数据采集工具,可以帮助我们从网页中提取所需的信息。而 RESTful API …...

【PX4飞控】mavros gps相关话题分析,经纬度海拔获取方法,卫星数锁定状态获取方法

使用 ROS1-Noetic 和 mavros v1.20.1&#xff0c; 携带经纬度海拔的话题主要有三个&#xff1a; /mavros/global_position/raw/fix/mavros/gpsstatus/gps1/raw/mavros/global_position/global 查看 mavros 源码&#xff0c;来分析他们的发布过程。发现前两个话题都对应了同一…...

使用python进行图像处理—图像滤波(5)

图像滤波是图像处理中最基本和最重要的操作之一。它的目的是在空间域上修改图像的像素值&#xff0c;以达到平滑&#xff08;去噪&#xff09;、锐化、边缘检测等效果。滤波通常通过卷积操作实现。 5.1卷积(Convolution)原理 卷积是滤波的核心。它是一种数学运算&#xff0c;…...

大模型的LoRa通讯详解与实现教程

一、LoRa通讯技术概述 LoRa(Long Range)是一种低功耗广域网(LPWAN)通信技术,由Semtech公司开发,特别适合于物联网设备的长距离、低功耗通信需求。LoRa技术基于扩频调制技术,能够在保持低功耗的同时实现数公里甚至数十公里的通信距离。 LoRa的主要特点 长距离通信:在城…...