环形链表系列导学
问题描述
给定一个单链表,可能存在一个环。我们的目标是找到环的入口节点,即从这个节点开始,链表进入循环。如果没有环,则返回 null。
将链表问题转化为数学问题
状态序列与循环
我们可以将链表节点视为状态,每个节点的 next 指针代表状态转移函数 f f f。从头节点开始,我们可以得到一个状态序列:
- x 0 , x 1 = f ( x 0 ) , x 2 = f ( x 1 ) , x 3 = f ( x 2 ) , … x_0, x_1 = f(x_0), x_2 = f(x_1), x_3 = f(x_2), \ldots x0,x1=f(x0),x2=f(x1),x3=f(x2),…
如果链表中存在环,那么这个序列将出现循环。
寻找循环起点
我们的目标是找到状态序列中最小的 μ \mu μ,使得对于某个最小的 λ \lambda λ,满足:
- x μ = x μ + λ x_{\mu} = x_{\mu + \lambda} xμ=xμ+λ
其中:
- μ \mu μ 是循环的起始位置(环的入口)
- λ \lambda λ 是循环节的长度(环的长度)
Floyd 判圈算法的数学原理
阶段一:检测循环
使用两个指针:
- 慢指针(slow):每次移动一步
- 快指针(fast):每次移动两步
阶段二:找到循环的起始位置
数学推导
设:
- 非环部分长度: a a a
- 环的长度: b b b
- 从环入口到相遇点的距离: c c c
- 快指针在环内绕行的圈数: k k k ( k ≥ 1 k \geq 1 k≥1)
距离关系
-
慢指针走的总距离:
D slow = a + c D_{\text{slow}} = a + c Dslow=a+c -
快指针走的总距离:
D fast = a + c + k × b D_{\text{fast}} = a + c + k \times b Dfast=a+c+k×b -
由于快指针速度是慢指针的两倍:
D fast = 2 × D slow D_{\text{fast}} = 2 \times D_{\text{slow}} Dfast=2×Dslow
推导步骤
-
建立等式:
a + c + k × b = 2 × ( a + c ) a + c + k \times b = 2 \times (a + c) a+c+k×b=2×(a+c) -
化简:
a + c + k × b = 2 a + 2 c a + c + k \times b = 2a + 2c a+c+k×b=2a+2c
k × b = 2 a + 2 c − a − c k \times b = 2a + 2c - a - c k×b=2a+2c−a−c
k × b = a + c k \times b = a + c k×b=a+c -
得出关系式:
a + c = k × b a + c = k \times b a+c=k×b
寻找环的入口
- 快指针走了 a a a 步到达环入口
- 慢指针从相遇点再走 b − c b - c b−c 步也到达环入口
因为:
b − c = b − ( k × b − a ) = − ( k − 1 ) × b + a b - c = b - (k \times b - a) = - (k - 1) \times b + a b−c=b−(k×b−a)=−(k−1)×b+a
具体例子
假设:
- 非环部分长度: a = 3 a = 3 a=3
- 环的长度: b = 4 b = 4 b=4
- 快指针在环内绕行的圈数: k = 1 k = 1 k=1
根据推导:
a + c = k × b ⟹ c = k × b − a = 1 × 4 − 3 = 1 a + c = k \times b \implies c = k \times b - a = 1 \times 4 - 3 = 1 a+c=k×b⟹c=k×b−a=1×4−3=1
-
慢指针走的总距离:
D slow = a + c = 3 + 1 = 4 D_{\text{slow}} = a + c = 3 + 1 = 4 Dslow=a+c=3+1=4 -
快指针走的总距离:
D fast = 2 × D slow = 8 D_{\text{fast}} = 2 \times D_{\text{slow}} = 8 Dfast=2×Dslow=8
验证快指针的距离:
D fast = a + c + k × b = 3 + 1 + 1 × 4 = 8 D_{\text{fast}} = a + c + k \times b = 3 + 1 + 1 \times 4 = 8 Dfast=a+c+k×b=3+1+1×4=8
相关文章:
环形链表系列导学
问题描述 给定一个单链表,可能存在一个环。我们的目标是找到环的入口节点,即从这个节点开始,链表进入循环。如果没有环,则返回 null。 将链表问题转化为数学问题 状态序列与循环 我们可以将链表节点视为状态,每个节点的 next 指针代表状态转移函数 f f f。从头节点开始,我…...
IDEA2024创建一个spingboot项目
以下是创建一个基本的 Spring Boot 项目的步骤和示例: 初始化一个springboot工程其实有许多方法,笔者这里挑了一个最快捷的方式搭建一个项目。我们直接通过官方平台(start.spring.io)进行配置,然后下载压缩包就可以获取…...
Nginx:ssl
目录 部署ssl前提 nginx部署ssl证书 部署ssl部署建议 部署ssl前提 网站有域名根据域名申请到ssl证书,并下载证书部署到nginx中 部署了ssl证书后,访问的流量是加密的。 nginx部署ssl证书 #80端口跳转到443 server {listen 80;return 302 https://1…...
QT配置文件详解
TEMPLATElib TEMPLATE变量用于指定项目模板类型,其值可以是以下几种: app:建立一个应用程序的makefile,这是默认值。lib:建立一个库的makefile。vcapp:建立一个应用程序的Visual Studio项目文件。vclib&a…...
根据合约地址判断合约协议的方法
判断合约协议之前,需要了解一下什么是ERC165协议: ERC165 是以太坊中用于标准化接口检测的协议,由 Fabian Vogelsteller 在 2018 年创建 ,其核心内容主要包括以下方面: 接口定义 单一函数接口:ERC165 协议…...
联想YOGA Pro 14s至尊版电脑找不到独立显卡(N卡)问题,也无法安装驱动的问题
问题描述 电脑是联想YOGA Pro 14s至尊版,电脑上装的独立显卡是4060,一直是能够使用独立显卡的。然而有两次突然就找不到显卡了,NVIDIA CONTROL PANEL也消失了,而且也无法安装驱动。具体表现如下: 无法连接外接显示器…...
Spring Web开发注解和请求(1)
大家好我是小帅,今天我们来学习Spring Web MVC框架(入门级) 文章目录 1. 什么是 Spring Web MVC?1.1 MVC 定义1.2 什么是Spring MVC ? 2. 学习Spring MVC2.1 建⽴连接第一个spring MVC程序 3. web开发注解的解释3.1RestControlle…...
Supervisor使用教程
文章目录 [toc] Supervisor使用教程平台要求 安装supervisor本文测试的时候是使用Linux的yum安装的(其它方式未做测试)加入系统守护进行 Supervisor使用教程 在项目中,经常有脚本需要常驻运行的需求。以PHP脚本为例,最简单的方式…...
Spark基本命令详解
文章目录 Spark基本命令详解一、引言二、Spark Core 基本命令1、Transformations(转换操作)1.1、groupBy(func)1.2、filter(func) 2、Actions(动作操作)2.1、distinct([numTasks])2.2、sortBy(func, [ascending], [numTasks]) 三、…...
Three.js 相机视角的平滑过渡与点击模型切换视角
在 Three.js 中,实现相机视角的平滑过渡和点击模型切换到查看模型视角是一个常见且有用的功能。这种效果不仅能提升用户体验,还能为场景互动添加更多的动态元素。 1. 基本设置 首先,我们需要创建一个基本的 Three.js 场景,包括相…...
jenken 打包linux包遇到的问题(环境变量)
环境变量问题 我们jenkens 打包的时候 远程打包 通过ssh 去在服务器上调用脚本 环境变量没有去自动加载 代码打包的时候总是提示相关的so文件找不到 解决方案在 相关程序的make之前 把环境变量加在前面 我这里直接将变量加载代码的最前面...
使用 Go 语言中的 Context 取消协程执行
使用 Go 语言中的 Context 取消协程执行 在 Go 语言中,协程(goroutine)是一种轻量级的线程,非常适合处理并发任务。然而,如何优雅地取消正在运行的协程是一个常见的问题。本文将通过一个具体的例子来展示如何使用 con…...
python图像彩色数字化
效果展示: 目录结构: alphabets.py GENERAL {"simple": "%#*-:. ","complex": "$B%8&WM#*oahkbdpqwmZO0QLCJUYXzcvunxrjft/\|()1{}[]?-_~<>i!lI;:,\"^. " } # Full list could be found here…...
cesium 3dtile ClippingPlanes 多边形挖洞ClippingPlaneCollection
原理就是3dtiles里面的属性clippingPlanes 采用ClippingPlaneCollection,构成多边形来挖洞。 其次就是xyz法向量挖洞 clippingPlanes: new this.ffCesium.Cesium.ClippingPlaneCollection({unionClippingRegions: true, // true 表示多个切割面能合并为一个有效的…...
docker 僵尸进程问题
docker僵尸进程 子进程结束后,父进程没有回收该进程资源(父进程可能没有wait),子进程残留资源存放与内核中,就变为僵尸进程(zombie) 场景分析:python脚本A中执行B应用,将A部署在docker中&#…...
微软要求 Windows Insider 用户试用备受争议的召回功能
拥有搭载 Qualcomm Snapdragon 处理器的 Copilot PC 的 Windows Insider 计划参与者现在可以试用 Recall,这是一项臭名昭著的快照拍摄 AI 功能,在今年早些时候推出时受到了很多批评。 Windows 营销高级总监 Melissa Grant 上周表示:“我们听…...
husky,commit规范,生成CHANGELOG.md,npm发版
项目git提交工程化(钩子,提交信息commit message),npm修改版本,需要涉及到的包: husky,允许在git钩子中执行不同的脚步,如commitlint,eslint,prettier&#…...
DETR:一种新颖的端到端目标检测与分割框架
DETR:一种新颖的端到端目标检测与分割框架 摘要: 随着深度学习技术的发展,目标检测和图像分割任务取得了显著的进步。然而,传统的基于区域提名的方法在处理这些问题时存在一定的局限性。为此,Facebook AI Research&am…...
前端js面试知识点思维导图(脑图)
如果看着不清晰可以去https://download.csdn.net/download/m0_73761441/90058523访问下载,无需积分 使用百度脑图制作,可以一键导入下面的文本生成自己的脑图 js相关面试题、知识点 数据类型 1. 数据类型分类?分别包含ÿ…...
【Java基础入门篇】一、变量、数据类型和运算符
Java基础入门篇 一、变量、数据类型和运算符 1.1 变量 计算机中的数据表示方式是:“二进制(0/1)”,但是同时也可以兼容其他进制,例如八进制、十进制、十六进制等。 Java变量的本质是:存储在固定空间的内容,变量名是…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...
基于SpringBoot在线拍卖系统的设计和实现
摘 要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统,主要的模块包括管理员;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...
在树莓派上添加音频输入设备的几种方法
在树莓派上添加音频输入设备可以通过以下步骤完成,具体方法取决于设备类型(如USB麦克风、3.5mm接口麦克风或HDMI音频输入)。以下是详细指南: 1. 连接音频输入设备 USB麦克风/声卡:直接插入树莓派的USB接口。3.5mm麦克…...
在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南
在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南 背景介绍完整操作步骤1. 创建Docker容器环境2. 验证GUI显示功能3. 安装ROS Noetic4. 配置环境变量5. 创建ROS节点(小球运动模拟)6. 配置RVIZ默认视图7. 创建启动脚本8. 运行可视化系统效果展示与交互技术解析ROS节点通…...
麒麟系统使用-进行.NET开发
文章目录 前言一、搭建dotnet环境1.获取相关资源2.配置dotnet 二、使用dotnet三、其他说明总结 前言 麒麟系统的内核是基于linux的,如果需要进行.NET开发,则需要安装特定的应用。由于NET Framework 是仅适用于 Windows 版本的 .NET,所以要进…...
shell脚本质数判断
shell脚本质数判断 shell输入一个正整数,判断是否为质数(素数)shell求1-100内的质数shell求给定数组输出其中的质数 shell输入一个正整数,判断是否为质数(素数) 思路: 1:1 2:1 2 3:1 2 3 4:1 2 3 4 5:1 2 3 4 5-------> 3:2 4:2 3 5:2 3…...
【汇编逆向系列】六、函数调用包含多个参数之多个整型-参数压栈顺序,rcx,rdx,r8,r9寄存器
从本章节开始,进入到函数有多个参数的情况,前面几个章节中介绍了整型和浮点型使用了不同的寄存器在进行函数传参,ECX是整型的第一个参数的寄存器,那么多个参数的情况下函数如何传参,下面展开介绍参数为整型时候的几种情…...
自定义线程池1.2
自定义线程池 1.2 1. 简介 上次我们实现了 1.1 版本,将线程池中的线程数量交给使用者决定,并且将线程的创建延迟到任务提交的时候,在本文中我们将对这个版本进行如下的优化: 在新建线程时交给线程一个任务。让线程在某种情况下…...
【动态规划】B4336 [中山市赛 2023] 永别|普及+
B4336 [中山市赛 2023] 永别 题目描述 你做了一个梦,梦里有一个字符串,这个字符串无论正着读还是倒着读都是一样的,例如: a b c b a \tt abcba abcba 就符合这个条件。 但是你醒来时不记得梦中的字符串是什么,只记得…...
