当前位置: 首页 > news >正文

根据导数的定义计算导函数

1. Finding derivatives using the definition (使用定义求导)

1.1. We want to differentiate f ( x ) = 1 / x f(x) = 1/x f(x)=1/x with respect to x x x

f ( x ) = 1 / x f(x) = 1/x f(x)=1/x 关于 x x x 求导

The definition of the derivative (导数的定义) is
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h \begin{aligned} f'(x) = \underset{h \rightarrow 0}{\text{lim}}\frac{f(x + h) - f(x)}{h} \end{aligned} f(x)=h0limhf(x+h)f(x)

If you just replace h h h by 0 in the fraction, you end up with the indeterminate form 0 0 \frac{0}{0} 00.
如果只是用 0 替换 h h h,结果就会得到一个 0 0 \frac{0}{0} 00 的不定式。

So in our case we have
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h = lim h → 0 1 x + h − 1 x h = lim h → 0 x − ( x + h ) ( x + h ) x h = lim h → 0 − h h ( x + h ) x = lim h → 0 − 1 ( x + h ) x = − 1 ( x + 0 ) x = − 1 x 2 \begin{aligned} f'(x) &= \underset{h \rightarrow 0}{\text{lim}}\frac{f(x + h) - f(x)}{h} \\ &= \underset{h \rightarrow 0}{\text{lim}}\frac{\frac{1}{x + h} - \frac{1}{x}}{h} \\ &= \underset{h \rightarrow 0}{\text{lim}}\frac{\frac{x - (x + h)}{(x + h)x}}{h} \\ &= \underset{h \rightarrow 0}{\text{lim}}\frac{-h}{h(x + h)x} \\ &= \underset{h \rightarrow 0}{\text{lim}}\frac{-1}{(x + h)x} \\ &= \frac{-1}{(x + 0)x} \\ &= -\frac{1}{x^2} \\ \end{aligned} f(x)=h0limhf(x+h)f(x)=h0limhx+h1x1=h0limh(x+h)xx(x+h)=h0limh(x+h)xh=h0lim(x+h)x1=(x+0)x1=x21

在这里插入图片描述
d d x ( 1 x ) = − 1 x 2 \begin{aligned} \frac{\text{d}}{\text{d}x}(\frac{1}{x}) = -\frac{1}{x^2} \\ \end{aligned} dxd(x1)=x21

1.2. We want to differentiate f ( x ) = x f(x) = \sqrt{x} f(x)=x with respect to x x x

f ( x ) = x f(x) = \sqrt{x} f(x)=x 关于 x x x 求导

Let’s multiply top and bottom by the conjugate of the numerator (分子和分母同时乘以分子的共轭表达式) to get
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h = lim h → 0 x + h − x h = lim h → 0 x + h − x h × x + h + x x + h + x = lim h → 0 ( x + h ) − x h ( x + h + x ) = lim h → 0 h h ( x + h + x ) = lim h → 0 1 x + h + x = 1 x + 0 + x = 1 2 x \begin{aligned} f'(x) &= \underset{h \rightarrow 0}{\text{lim}}\frac{f(x + h) - f(x)}{h} \\ &= \underset{h \rightarrow 0}{\text{lim}}\frac{\sqrt{x + h} - \sqrt{x}}{h} \\ &= \underset{h \rightarrow 0}{\text{lim}}\frac{\sqrt{x + h} - \sqrt{x}}{h} \times \frac{\sqrt{x + h} + \sqrt{x}}{\sqrt{x + h} + \sqrt{x}} \\ &= \underset{h \rightarrow 0}{\text{lim}}\frac{(x + h) - x}{h(\sqrt{x + h} + \sqrt{x})} \\ &= \underset{h \rightarrow 0}{\text{lim}}\frac{h}{h(\sqrt{x + h} + \sqrt{x})} \\ &= \underset{h \rightarrow 0}{\text{lim}}\frac{1}{\sqrt{x + h} + \sqrt{x}} \\ &= \frac{1}{\sqrt{x + 0} + \sqrt{x}} \\ &= \frac{1}{2\sqrt{x}} \\ \end{aligned} f(x)=h0limhf(x+h)f(x)=h0limhx+h x =h0limhx+h x ×x+h +x x+h +x =h0limh(x+h +x )(x+h)x=h0limh(x+h +x )h=h0limx+h +x 1=x+0 +x 1=2x 1

在这里插入图片描述
d d x ( x ) = 1 2 x \begin{aligned} \frac{\text{d}}{\text{d}x}(\sqrt{x}) = \frac{1}{2\sqrt{x}} \\ \end{aligned} dxd(x )=2x 1

1.3. We want to differentiate f ( x ) = x + x 2 f(x) = \sqrt{x} + x^{2} f(x)=x +x2 with respect to x x x

f ( x ) = x + x 2 f(x) = \sqrt{x} + x^{2} f(x)=x +x2 关于 x x x 求导

f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h = lim h → 0 ( x + h + ( x + h ) 2 ) − ( x + x 2 ) h = lim h → 0 x + h − x + ( x + h ) 2 − x 2 h = lim h → 0 x + h − x + 2 x h + h 2 h = lim h → 0 ( x + h − x h + 2 x h + h 2 h ) = lim h → 0 ( x + h − x h + 2 x + h ) = lim h → 0 x + h − x h + lim h → 0 ( 2 x + h ) = 1 2 x + lim h → 0 ( 2 x + h ) = 1 2 x + ( 2 x + 0 ) = 1 2 x + 2 x \begin{aligned} f'(x) &= \underset{h \rightarrow 0}{\text{lim}}\frac{f(x + h) - f(x)}{h} \\ &= \underset{h \rightarrow 0}{\text{lim}}\frac{(\sqrt{x + h} + (x + h)^2) - (\sqrt{x} + x^2)}{h} \\ &= \underset{h \rightarrow 0}{\text{lim}}\frac{\sqrt{x + h} - \sqrt{x} + (x + h)^2 - x^2}{h} \\ &= \underset{h \rightarrow 0}{\text{lim}}\frac{\sqrt{x + h} - \sqrt{x} + 2xh + h^2}{h} \\ &= \underset{h \rightarrow 0}{\text{lim}}(\frac{\sqrt{x + h} - \sqrt{x}}{h} + \frac{2xh + h^2}{h}) \\ &= \underset{h \rightarrow 0}{\text{lim}}(\frac{\sqrt{x + h} - \sqrt{x}}{h} + {2x + h}) \\ &= \underset{h \rightarrow 0}{\text{lim}}\frac{\sqrt{x + h} - \sqrt{x}}{h} + \underset{h \rightarrow 0}{\text{lim}}({2x + h}) \\ &= \frac{1}{2\sqrt{x}} + \underset{h \rightarrow 0}{\text{lim}}({2x + h}) \\ &= \frac{1}{2\sqrt{x}} + ({2x + 0}) \\ &= \frac{1}{2\sqrt{x}} + 2x \\ \end{aligned} f(x)=h0limhf(x+h)f(x)=h0limh(x+h +(x+h)2)(x +x2)=h0limhx+h x +(x+h)2x2=h0limhx+h x +2xh+h2=h0lim(hx+h x +h2xh+h2)=h0lim(hx+h x +2x+h)=h0limhx+h x +h0lim(2x+h)=2x 1+h0lim(2x+h)=2x 1+(2x+0)=2x 1+2x

1.4. We want to differentiate f ( x ) = x n f(x) = x^{n} f(x)=xn with respect to x x x, where n n n is some positive integer

f ( x ) = x n f(x) = x^{n} f(x)=xn 关于 x x x 求导,其中 n n n 是某个正整数

f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h = lim h → 0 ( x + h ) n − x n h \begin{aligned} f'(x) &= \underset{h \rightarrow 0}{\text{lim}}\frac{f(x + h) - f(x)}{h} \\ &= \underset{h \rightarrow 0}{\text{lim}}\frac{(x + h)^{n} - x^{n}}{h} \\ \end{aligned} f(x)=h0limhf(x+h)f(x)=h0limh(x+h)nxn

( x + h ) n = ( x + h ) ( x + h ) … ( x + h ) \begin{aligned} (x + h)^{n} = (x + h)(x + h) \dots (x + h) \end{aligned} (x+h)n=(x+h)(x+h)(x+h)

If you take the term x x x from each factor, there are n n n of them, so you get one term x n x^{n} xn in the product.
如果从每一个因子中提取项 x x x,将会有 n n n x x x,因而会在乘积中得到 x n x^{n} xn 这一项。

( x + h ) n = ( x + h ) ( x + h ) … ( x + h ) = x n + 含有因子  h 的项 \begin{aligned} (x + h)^{n} = (x + h)(x + h) \dots (x + h) = x^{n} + 含有因子 \ h \ 的项 \end{aligned} (x+h)n=(x+h)(x+h)(x+h)=xn+含有因子 h 的项

If you take the term h h h from the first factor and x x x from the others, then you have one h h h and ( n − 1 ) (n - 1) (n1) copies of x x x, so you get h x n − 1 hx^{n - 1} hxn1 when you multiply them all together.
如果从第一个因子中提取 h h h,然后从其他因子中提取 x x x,那样就会有一个 h h h ( n − 1 ) (n - 1) (n1) x x x,因此当将它们都乘起来的时候会得到 h x n − 1 hx^{n - 1} hxn1。还有其他的方法来选择一个 h h h 和其余的 x x x (可以从第二个因子里提取 h h h,然后从其他因子中提取 x x x;或者从第三个因子里提取 h h h,然后从其他因子中提取 x x x,如此等等)。

In fact, there are n n n ways you could pick one h h h and the rest x x x, so you actually have n n n copies of h x n − 1 hx^{n-1} hxn1. Together, this makes n h x n − 1 nhx^{n-1} nhxn1.
事实上,有 n n n 种方法来选取一个 h h h 和其余的 x x x,因此实际上有 n n n h x n − 1 hx^{n - 1} hxn1 加在一起,会得到 n h x n − 1 nhx^{n - 1} nhxn1

Every other term in the expansion has at least two copies of h h h, so every other term has a factor of h 2 h^2 h2.
在展开式中,每隔一项至少有两个 h h h,因此每隔一项就含有一个带 h 2 h^2 h2 的因子。

( x + h ) n = ( x + h ) ( x + h ) … ( x + h ) = x n + n h x n − 1 + 含有因子  h 2 的项 \begin{aligned} (x + h)^{n} = (x + h)(x + h) \dots (x + h) = x^{n} + nhx^{n - 1} + 含有因子 \ h^{2} \ 的项 \end{aligned} (x+h)n=(x+h)(x+h)(x+h)=xn+nhxn1+含有因子 h2 的项

Term is just a polynomial in x x x and h h h.
项是含有 x x x h h h 的多项式。

f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h = lim h → 0 ( x + h ) n − x n h = lim h → 0 x n + n h x n − 1 + h 2 × ( term ) − x n h = lim h → 0 n h x n − 1 + h 2 × ( term ) h = lim h → 0 ( n x n − 1 + h × ( term ) ) = n x n − 1 + 0 × ( term ) = n x n − 1 \begin{aligned} f'(x) &= \underset{h \rightarrow 0}{\text{lim}}\frac{f(x + h) - f(x)}{h} \\ &= \underset{h \rightarrow 0}{\text{lim}}\frac{(x + h)^{n} - x^{n}}{h} \\ &= \underset{h \rightarrow 0}{\text{lim}}\frac{x^{n} + nhx^{n - 1} + h^{2} \times (\text{term}) - x^{n}}{h} \\ &= \underset{h \rightarrow 0}{\text{lim}}\frac{nhx^{n - 1} + h^{2} \times (\text{term})}{h} \\ &= \underset{h \rightarrow 0}{\text{lim}}({nx^{n - 1} + h \times (\text{term})} )\\ &= nx^{n - 1} + 0 \times (\text{term}) \\ &= nx^{n - 1} \\ \end{aligned} f(x)=h0limhf(x+h)f(x)=h0limh(x+h)nxn=h0limhxn+nhxn1+h2×(term)xn=h0limhnhxn1+h2×(term)=h0lim(nxn1+h×(term))=nxn1+0×(term)=nxn1

The x n x^{n} xn terms cancel, and then we can cancel out a factor of h h h.

d d x ( x n ) = n x n − 1 when  n is a positive integer \begin{aligned} \frac{\text{d}}{\text{d}x}(x^{n}) = nx^{n - 1} \ \text{when} \ n \ \text{is a positive integer} \end{aligned} dxd(xn)=nxn1 when n is a positive integer

1.5. We want to differentiate f ( x ) = x a f(x) = x^{a} f(x)=xa with respect to x x x, when a a a is any real number at all

f ( x ) = x a f(x) = x^{a} f(x)=xa 关于 x x x 求导,其中 a a a 是任意实数

In words, you are simply taking the power, putting a copy of it out front as the coefficient, and then knocking the power down by 1.
提取次数,将它放在最前面作系数,然后再将次数减少 1

在这里插入图片描述
d d x ( x a ) = a x a − 1 when  a is any real number at all \begin{aligned} \frac{\text{d}}{\text{d}x}(x^{a}) = ax^{a - 1} \ \text{when} \ a \ \text{ is any real number at all} \end{aligned} dxd(xa)=axa1 when a  is any real number at all

When a = 0 a = 0 a=0, then x a x^a xa is the constant function 1. The derivative is then 0 x − 1 0x^{-1} 0x1, which is just 0.
a = 0 a = 0 a=0 时, x a x^a xa 是常数函数 1,其导数是 0 x − 1 0x^{-1} 0x1,结果是 0

在这里插入图片描述
如果  C 是常数,那么 d d x ( C ) = 0 。 \begin{aligned} 如果 \ C \ 是常数,那么 \frac{\text{d}}{\text{d}x}(C) = 0。 \end{aligned} 如果 C 是常数,那么dxd(C)=0

If a = 1 a = 1 a=1, then x a x^a xa is just x x x. According to the formula, the derivative
is 1 x 0 1x^0 1x0, which is the constant function 1.
a = 1 a = 1 a=1 时, x a x^a xa x x x,其导数是 1 x 0 1x^{0} 1x0,也就是常数函数 1

在这里插入图片描述
d d x ( x ) = 1 \begin{aligned} \frac{\text{d}}{\text{d}x}(x) = 1 \end{aligned} dxd(x)=1

When a = 2 a = 2 a=2, then we see that the derivative of x 2 x^2 x2 with respect to x x x is 2 x 1 2x^1 2x1, which is just 2 x 2x 2x.

When a = − 1 a = -1 a=1, we can use our formula to see that the derivative of x − 1 x^{-1} x1 is − 1 × x − 2 -1 \times x^{-2} 1×x2. In fact, this just says that the derivative of 1 / x 1/x 1/x is − 1 / x 2 -1/x^{2} 1/x2.

d d x ( x ) = d d x ( x 1 / 2 ) = 1 2 x 1 / 2 − 1 = 1 2 x − 1 / 2 = 1 2 × 1 x 1 / 2 = 1 2 × 1 x = 1 2 x \begin{aligned} \frac{\text{d}}{\text{d}x}(\sqrt{x}) &= \frac{\text{d}}{\text{d}x}(x^{1/2}) \\ &= \frac{1}{2}x^{1/2 - 1} \\ &= \frac{1}{2}x^{-1/2} \\ &= \frac{1}{2} \times \frac{1}{x^{1/2}} \\ &= \frac{1}{2} \times \frac{1}{\sqrt{x}} \\ &=\frac{1}{2\sqrt{x}} \\ \end{aligned} dxd(x )=dxd(x1/2)=21x1/21=21x1/2=21×x1/21=21×x 1=2x 1

d d x ( x 3 ) = d d x ( x 1 / 3 ) = 1 3 x 1 / 3 − 1 = 1 3 x − 2 / 3 = 1 3 × 1 x 2 / 3 = 1 3 × 1 x 2 3 = 1 3 x 2 3 \begin{aligned} \frac{\text{d}}{\text{d}x}(\sqrt[3]{x}) &= \frac{\text{d}}{\text{d}x}(x^{1/3}) \\ &= \frac{1}{3}x^{1/3 - 1} \\ &= \frac{1}{3}x^{-2/3} \\ &= \frac{1}{3} \times \frac{1}{x^{2/3}} \\ &= \frac{1}{3} \times \frac{1}{\sqrt[3]{x^{2}}} \\ &=\frac{1}{3\sqrt[3]{x^{2}}} \\ \end{aligned} dxd(3x )=dxd(x1/3)=31x1/31=31x2/3=31×x2/31=31×3x2 1=33x2 1

References

[1] Yongqiang Cheng, https://yongqiang.blog.csdn.net/
[2] 普林斯顿微积分读本 (修订版), https://m.ituring.com.cn/book/1623

相关文章:

根据导数的定义计算导函数

根据导数的定义计算导函数 1. Finding derivatives using the definition (使用定义求导)1.1. **We want to differentiate f ( x ) 1 / x f(x) 1/x f(x)1/x with respect to x x x**</font>1.2. **We want to differentiate f ( x ) x f(x) \sqrt{x} f(x)x ​ wi…...

WPF关于打开新窗口获取数据的回调方法的两种方式

一种基于消息发送模式 一种基于回调机制 基于消息发送模式 父页面定义接收的_selectedPnNumberStandarMsg保证是唯一 Messenger.Default.Register<PlateReplaceApplyModel>(this, _selectedPnNumberStandarMsgToken, platePnNumberModel > { …...

复杂网络(四)

一、规则网络 孤立节点网络全局耦合网络&#xff08;又称完全网络&#xff09;星型网络一维环二维晶格 编程实践&#xff1a; import networkx as nx import matplotlib.pyplot as pltn 10 #创建孤立节点图 G1 nx.Graph() G1.add_nodes_from(list(range(n))) plt.figure(f…...

用MATLAB符号工具建立机器人的动力学模型

目录 介绍代码功能演示拉格朗日方法回顾求解符号表达式数值求解 介绍 开发机器人过程中经常需要用牛顿-拉格朗日法建立机器人的动力学模型&#xff0c;表示为二阶微分方程组。本文以一个二杆系统为例&#xff0c;介绍如何用MATLAB符号工具得到微分方程表达式&#xff0c;只需要…...

SQL优化与性能——数据库设计优化

数据库设计优化是提高数据库性能、确保数据一致性和支持业务增长的关键环节。无论是大型企业应用还是小型项目&#xff0c;合理的数据库设计都能够显著提升系统性能、减少冗余数据、优化查询响应时间&#xff0c;并降低维护成本。本章将深入探讨数据库设计中的几个关键技术要点…...

FPGA存在的意义:为什么adc连续采样需要fpga来做,而不会直接用iic来实现

FPGA存在的意义&#xff1a;为什么adc连续采样需要fpga来做&#xff0c;而不会直接用iic来实现 原因ADS111x连续采样实现连续采样功能说明iic读取adc的数据速率 VS adc连续采样的速率adc连续采样的速率iic读取adc的数据速率结论分析 FPGA读取adc数据问题一&#xff1a;读取adc数…...

我们来学mysql -- 事务之概念(原理篇)

事务的概念 题记一个例子一致性隔离性原子性持久性 题记 在漫长的编程岁月中&#xff0c;存在一如既往地贯穿着工作&#xff0c;面试的概念这类知识点&#xff0c;事不关己当然高高挂起&#xff0c;精准踩坑时那心情也的却是日了&#x1f436;请原谅我的粗俗&#xff0c;遇到B…...

基于特征子空间的高维异常检测:一种高效且可解释的方法

本文将重点探讨一种替代传统单一检测器的方法&#xff1a;不是采用单一检测器分析数据集的所有特征&#xff0c;而是构建多个专注于特征子集(即子空间)的检测器系统。 在表格数据的异常检测实践中&#xff0c;我们的目标是识别数据中最为异常的记录&#xff0c;这种异常性可以…...

看不见的彼方:交换空间——小菜一碟

有个蓝色的链接&#xff0c;先去看看两年前的题目的write up &#xff08;https://github.com/USTC-Hackergame/hackergame2022-writeups/blob/master/official/%E7%9C%8B%E4%B8%8D%E8%A7%81%E7%9A%84%E5%BD%BC%E6%96%B9/README.md&#xff09; 从别人的write up中了解到&…...

YOLO模型训练后的best.pt和last.pt区别

在选择YOLO模型训练后的权重文件best.pt和last.pt时&#xff0c;主要取决于具体的应用场景‌&#xff1a;‌12 ‌best.pt‌&#xff1a;这个文件保存的是在训练过程中表现最好的模型权重。通常用于推理和部署阶段&#xff0c;因为它包含了在验证集上表现最好的模型权重&#x…...

Pareidoscope - 语言结构关联工具

文章目录 关于 Pareidoscope安装使用方法输入格式语料库查询 将语料库转换为 SQLite3 数据库两种语言结构之间的关联简单词素分析关联共现和伴随词素分析相关的更大结构可视化关联结构 关于 Pareidoscope Pareidoscope 是一组 用于确定任意语言结构之间 关联的工具&#xff0c…...

GPT(Generative Pre-trained Transformer) 和 Transformer的比较

GPT&#xff08;Generative Pre-trained Transformer&#xff09; 和 Transformer 的比较 flyfish 1. Transformer 是一种模型架构 Transformer 是一种通用的神经网络架构&#xff0c;由 Vaswani 等人在论文 “Attention Is All You Need”&#xff08;2017&#xff09;中提…...

软件无线电(SDR)的架构及相关术语

今天简要介绍实现无线电系统调制和解调的主要方法&#xff0c;这在软件定义无线电(SDR)的背景下很重要。 外差和超外差 无线电发射机有两种主要架构——一种是从基带频率直接调制到射频频率&#xff08;称为外差&#xff09;&#xff0c;而第二种超外差是通过两个调制阶段来实…...

Python将Excel文件转换为JSON文件

工作过程中,需要从 Excel 文件中读取数据,然后交给 Python 程序处理数据,中间需要把 Excel 文件读取出来转为 json 格式,再进行下一步数据处理。 这里我们使用pandas库,这是一个强大的数据分析工具,能够方便地读取和处理各种数据格式。需要注意的是还需要引入openpyxl库,…...

排序算法之选择排序篇

思想&#xff1a; 每次从未排序的部分找出最小的元素&#xff0c;将其放到已排序部分的末尾 从数据结构中找到最小值&#xff0c;放到第一位&#xff0c;放到最前面&#xff0c;之后再从剩下的元素中找出第二小的值放到第二位&#xff0c;以此类推。 实现思路&#xff1a; 遍…...

sizeof和strlen区分,(好多例子)

sizeof算字节大小 带\0 strlen算字符串长度 \0之前...

A050-基于spring boot物流管理系统设计与实现

&#x1f64a;作者简介&#xff1a;在校研究生&#xff0c;拥有计算机专业的研究生开发团队&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的网站项目。 代码可以查看文章末尾⬇️联系方式获取&#xff0c;记得注明来意哦~&#x1f339; 赠送计算机毕业设计600…...

[自然语言处理] NLP-RNN及其变体-干货

一、认识RNN模型 1 什么是RNN模型 RNN(Recurrent Neural Network), 中文称作循环神经网络, 它一般以序列数据为输入, 通过网络内部的结构设计有效捕捉序列之间的关系特征, 一般也是以序列形式进行输出. 一般单层神经网络结构: RNN单层网络结构: 以时间步对RNN进行展开后的单层…...

Elasticsearch ILM 索引生命周期管理讲解与实战

ES ILM 索引生命周期管理讲解与实战 Elasticsearch ILM索引生命周期管理:深度解析与实战演练1. 引言1.1 背景介绍1.2 研究意义2. ILM核心概念2.1 ILM的四个阶段2.1.1 Hot阶段2.1.2 Warm阶段2.1.3 Cold阶段2.1.4 Delete阶段3. ILM实战指南3.1 定义ILM策略3.1.1 创建ILM策略3.1.…...

重塑视频新语言,让每一帧都焕发新生——Video-Retalking,开启数字人沉浸式交流新纪元!

模型简介 Video-Retalking 模型是一种基于深度学习的视频再谈话技术&#xff0c;它通过分析视频中的音频和图像信息&#xff0c;实现视频角色口型、表情乃至肢体动作的精准控制与合成。这一技术的实现依赖于强大的技术架构和核心算法&#xff0c;特别是生成对抗网络&#xff0…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

安卓基础(aar)

重新设置java21的环境&#xff0c;临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的&#xff1a; MyApp/ ├── app/ …...

《C++ 模板》

目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板&#xff0c;就像一个模具&#xff0c;里面可以将不同类型的材料做成一个形状&#xff0c;其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式&#xff1a;templa…...

【Android】Android 开发 ADB 常用指令

查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...

Caliper 配置文件解析:fisco-bcos.json

config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...

Vue 模板语句的数据来源

&#x1f9e9; Vue 模板语句的数据来源&#xff1a;全方位解析 Vue 模板&#xff08;<template> 部分&#xff09;中的表达式、指令绑定&#xff08;如 v-bind, v-on&#xff09;和插值&#xff08;{{ }}&#xff09;都在一个特定的作用域内求值。这个作用域由当前 组件…...

[USACO23FEB] Bakery S

题目描述 Bessie 开了一家面包店! 在她的面包店里&#xff0c;Bessie 有一个烤箱&#xff0c;可以在 t C t_C tC​ 的时间内生产一块饼干或在 t M t_M tM​ 单位时间内生产一块松糕。 ( 1 ≤ t C , t M ≤ 10 9 ) (1 \le t_C,t_M \le 10^9) (1≤tC​,tM​≤109)。由于空间…...

DAY 45 超大力王爱学Python

来自超大力王的友情提示&#xff1a;在用tensordoard的时候一定一定要用绝对位置&#xff0c;例如&#xff1a;tensorboard --logdir"D:\代码\archive (1)\runs\cifar10_mlp_experiment_2" 不然读取不了数据 知识点回顾&#xff1a; tensorboard的发展历史和原理tens…...