当前位置: 首页 > news >正文

充分统计量(Sufficient Statistic)概念与应用: 中英双语

充分统计量:概念与应用

在统计学中,充分统计量(Sufficient Statistic) 是一个核心概念。它是从样本中计算得出的函数,能够完整且无损地表征样本中与分布参数相关的信息。在参数估计中,充分统计量能够帮助我们提取必要的统计信息,从而实现更高效的推断。

本文将从充分统计量的定义出发,结合指数族分布的例子,深入探讨这一概念及其在统计推断中的重要性。


1. 充分统计量的定义

设 ( X = { x 1 , x 2 , … , x n } X = \{x_1, x_2, \dots, x_n\} X={x1,x2,,xn} ) 是来自分布 ( p ( x ∣ θ ) p(x|\theta) p(xθ) ) 的样本,其中 ( θ \theta θ ) 是分布的参数。统计量 ( T ( X ) T(X) T(X) ) 被称为关于参数 ( θ \theta θ ) 的充分统计量,如果满足因子分解定理(Factorization Theorem)

p ( X ∣ θ ) = h ( X ) g ( T ( X ) , θ ) , p(X|\theta) = h(X) g(T(X), \theta), p(Xθ)=h(X)g(T(X),θ),

其中:

  • ( T ( X ) T(X) T(X) ) 是样本的函数,即统计量;
  • ( h ( X ) h(X) h(X) ) 是与 ( θ \theta θ ) 无关的函数;
  • ( g ( T ( X ) , θ ) g(T(X), \theta) g(T(X),θ) ) 是 ( T ( X ) T(X) T(X) ) 与 ( θ \theta θ ) 的联合函数。

直观解释:充分统计量 ( T ( X ) T(X) T(X) ) 能够提取样本中关于参数 ( θ \theta θ ) 的全部信息,( h ( X ) h(X) h(X) ) 则捕捉了样本中与 ( θ \theta θ ) 无关的其他信息。


2. 充分统计量的意义

假设我们已经计算了充分统计量 ( T ( X ) T(X) T(X) ),则原始样本 ( X X X ) 中的其他信息对于 ( θ \theta θ ) 的估计是冗余的。也就是说,利用 ( T ( X ) T(X) T(X) ) 进行推断,与直接使用整个样本 ( X X X ) 的效果是等价的。

例如,在正态分布 ( X ∼ N ( μ , σ 2 ) X \sim \mathcal{N}(\mu, \sigma^2) XN(μ,σ2) ) 中:

  • 样本均值 ( x ˉ = 1 n ∑ i = 1 n x i \bar{x} = \frac{1}{n} \sum_{i=1}^n x_i xˉ=n1i=1nxi ) 是 ( μ \mu μ ) 的充分统计量;
  • 样本方差 ( s 2 = 1 n ∑ i = 1 n ( x i − x ˉ ) 2 s^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 s2=n1i=1n(xixˉ)2 ) 是 ( σ 2 \sigma^2 σ2 ) 的充分统计量。

3. 指数族分布与充分统计量

指数族分布是统计学中一类重要的分布形式,其概率密度函数(或质量函数)可以统一表示为:如果读者对指数族分布的概率密度函数的形式有疑问,请参考笔者的另一篇文章 指数族分布(Exponential Family of Distributions)的两种形式及其区别

p ( x ∣ θ ) = h ( x ) exp ⁡ ( η ( θ ) T t ( x ) − A ( θ ) ) , p(x|\theta) = h(x) \exp\left(\eta(\theta)^T t(x) - A(\theta)\right), p(xθ)=h(x)exp(η(θ)Tt(x)A(θ)),

其中:

  • ( η ( θ ) \eta(\theta) η(θ) ) 是参数 ( θ \theta θ ) 的自然参数;
  • ( t ( x ) t(x) t(x) ) 是样本的充分统计量;
  • ( A ( θ ) A(\theta) A(θ) ) 是规范化因子,保证分布的积分为 1;
  • ( h ( x ) h(x) h(x) ) 是与参数无关的测度函数。

3.1 常见的指数族分布例子

正态分布(均值已知,方差未知)

概率密度函数:
p ( x ∣ μ , σ 2 ) = 1 2 π σ 2 exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) . p(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right). p(xμ,σ2)=2πσ2 1exp(2σ2(xμ)2).

写成指数族形式:
p ( x ∣ μ , σ 2 ) = exp ⁡ ( − 1 2 σ 2 x 2 + μ σ 2 x − μ 2 2 σ 2 − 1 2 ln ⁡ ( 2 π σ 2 ) ) . p(x|\mu, \sigma^2) = \exp\left(-\frac{1}{2\sigma^2} x^2 + \frac{\mu}{\sigma^2} x - \frac{\mu^2}{2\sigma^2} - \frac{1}{2} \ln(2\pi\sigma^2)\right). p(xμ,σ2)=exp(2σ21x2+σ2μx2σ2μ221ln(2πσ2)).

充分统计量为:
t ( x ) = { x , x 2 } . t(x) = \{x, x^2\}. t(x)={x,x2}.

泊松分布

概率质量函数:
p ( x ∣ λ ) = λ x e − λ x ! , x = 0 , 1 , 2 , … p(x|\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}, \quad x = 0, 1, 2, \dots p(xλ)=x!λxeλ,x=0,1,2,

写成指数族形式:
p ( x ∣ λ ) = exp ⁡ ( x ln ⁡ λ − λ − ln ⁡ x ! ) . p(x|\lambda) = \exp\left(x \ln \lambda - \lambda - \ln x!\right). p(xλ)=exp(xlnλλlnx!).

充分统计量为:
t ( x ) = x . t(x) = x. t(x)=x.

二项分布

概率质量函数:
p ( x ∣ n , p ) = ( n x ) p x ( 1 − p ) n − x , x = 0 , 1 , … , n . p(x|n, p) = \binom{n}{x} p^x (1-p)^{n-x}, \quad x = 0, 1, \dots, n. p(xn,p)=(xn)px(1p)nx,x=0,1,,n.

写成指数族形式:
p ( x ∣ n , p ) = exp ⁡ ( x ln ⁡ p 1 − p + n ln ⁡ ( 1 − p ) + ln ⁡ ( n x ) ) . p(x|n, p) = \exp\left(x \ln \frac{p}{1-p} + n \ln (1-p) + \ln \binom{n}{x}\right). p(xn,p)=exp(xln1pp+nln(1p)+ln(xn)).

充分统计量为:
t ( x ) = x . t(x) = x. t(x)=x.


4. 应用场景

4.1 参数估计

充分统计量极大地简化了参数估计的过程。例如,在最大似然估计(MLE)中,充分统计量允许我们直接基于 ( T ( X ) T(X) T(X) ) 构建似然函数,而无需处理整个样本。

4.2 数据压缩

充分统计量将数据从高维样本 ( X X X ) 压缩为低维统计量 ( T ( X ) T(X) T(X) ),但仍然保留了关于参数 ( θ \theta θ ) 的全部信息。这对于大数据分析尤为重要。

4.3 贝叶斯推断

在贝叶斯框架中,充分统计量可以简化后验分布的计算,因为 ( p ( θ ∣ X ) ∝ p ( T ( X ) ∣ θ ) p ( θ ) p(\theta|X) \propto p(T(X)|\theta)p(\theta) p(θX)p(T(X)θ)p(θ) )。


5. 总结

充分统计量是统计推断中的关键工具,能够高效提取样本中关于分布参数的信息。通过指数族分布的形式化,我们不仅能够清晰地识别充分统计量,还能理解其在不同分布中的表现形式。充分统计量在参数估计、数据压缩和贝叶斯推断中的广泛应用,进一步凸显了其重要性。

读者在学习时,可以从正态分布、泊松分布等常见的指数族分布入手,尝试推导其充分统计量,以加深对这一概念的理解。

Sufficient Statistic: Concept and Applications

In statistics, the concept of sufficient statistic plays a fundamental role. A sufficient statistic is a function of a dataset that captures all the information about a parameter of interest contained within the data. By leveraging sufficient statistics, we can efficiently perform parameter inference without processing the entire dataset.

This article introduces sufficient statistics, their mathematical definition, and their relevance in statistical inference. We will illustrate the concept with examples from exponential family distributions, along with detailed mathematical formulations.


1. Definition of Sufficient Statistic

Let ( X = { x 1 , x 2 , … , x n } X = \{x_1, x_2, \dots, x_n\} X={x1,x2,,xn} ) be a sample drawn from a probability distribution ( p ( x ∣ θ p(x|\theta p(xθ) ), where ( θ \theta θ ) is the parameter of interest. A statistic ( T ( X ) T(X) T(X) ) is called a sufficient statistic for ( θ \theta θ ) if it satisfies the factorization theorem:

p ( X ∣ θ ) = h ( X ) g ( T ( X ) , θ ) , p(X|\theta) = h(X) \, g(T(X), \theta), p(Xθ)=h(X)g(T(X),θ),

where:

  • ( T ( X ) T(X) T(X) ) is the statistic (a function of the data);
  • ( h ( X ) h(X) h(X) ) is a function independent of ( θ \theta θ );
  • ( g ( T ( X ) , θ ) g(T(X), \theta) g(T(X),θ) ) depends only on ( T ( X ) T(X) T(X) ) and ( θ \theta θ ).

Intuition

A sufficient statistic ( T ( X ) T(X) T(X) ) extracts all the information about ( θ \theta θ ) from the dataset ( X X X ). Once ( T ( X ) T(X) T(X) ) is computed, the original dataset ( X X X ) provides no additional value for parameter estimation.


2. Importance of Sufficient Statistics

  1. Efficient Parameter Estimation
    Once the sufficient statistic ( T ( X ) T(X) T(X) ) is computed, we can perform inference on ( θ \theta θ ) without using the entire dataset. This simplifies calculations, especially for large datasets.

  2. Data Compression
    A sufficient statistic reduces the dimensionality of the data while retaining all relevant information about ( θ \theta θ ). For example, instead of using a large dataset, we only need ( T ( X ) T(X) T(X) ), which is often a low-dimensional vector.

  3. Bayesian Inference
    In Bayesian statistics, the posterior distribution ( p ( θ ∣ X ) p(\theta|X) p(θX) ) depends only on ( T ( X ) T(X) T(X) ). This simplifies the computation of posterior distributions.


3. Exponential Family and Sufficient Statistics

The exponential family of distributions provides a convenient framework for identifying sufficient statistics. A probability distribution belongs to the exponential family if it can be expressed as:

p ( x ∣ θ ) = h ( x ) exp ⁡ ( η ( θ ) T t ( x ) − A ( θ ) ) , p(x|\theta) = h(x) \exp\left(\eta(\theta)^T t(x) - A(\theta)\right), p(xθ)=h(x)exp(η(θ)Tt(x)A(θ)),

where:

  • ( η ( θ ) \eta(\theta) η(θ) ) is the natural parameter;
  • ( t ( x ) t(x) t(x) ) is the sufficient statistic;
  • ( A ( θ ) A(\theta) A(θ)) is the log-partition function, ensuring normalization;
  • ( h ( x ) h(x) h(x) ) is a base measure independent of ( θ \theta θ ).

3.1 Examples of Exponential Family Distributions

Normal Distribution (( μ \mu μ ) known, ( σ 2 \sigma^2 σ2 ) unknown)

Probability density function:
p ( x ∣ σ 2 ) = 1 2 π σ 2 exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) . p(x|\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right). p(xσ2)=2πσ2 1exp(2σ2(xμ)2).

Rewritten in exponential family form:
p ( x ∣ σ 2 ) = exp ⁡ ( − 1 2 σ 2 x 2 + μ σ 2 x − μ 2 2 σ 2 − 1 2 ln ⁡ ( 2 π σ 2 ) ) . p(x|\sigma^2) = \exp\left(-\frac{1}{2\sigma^2}x^2 + \frac{\mu}{\sigma^2}x - \frac{\mu^2}{2\sigma^2} - \frac{1}{2}\ln(2\pi\sigma^2)\right). p(xσ2)=exp(2σ21x2+σ2μx2σ2μ221ln(2πσ2)).

The sufficient statistic is:
t ( x ) = { x , x 2 } . t(x) = \{x, x^2\}. t(x)={x,x2}.

Poisson Distribution

Probability mass function:
p ( x ∣ λ ) = λ x e − λ x ! , x = 0 , 1 , 2 , … p(x|\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}, \quad x = 0, 1, 2, \dots p(xλ)=x!λxeλ,x=0,1,2,

Rewritten in exponential family form:
p ( x ∣ λ ) = exp ⁡ ( x ln ⁡ λ − λ − ln ⁡ x ! ) . p(x|\lambda) = \exp\left(x \ln \lambda - \lambda - \ln x!\right). p(xλ)=exp(xlnλλlnx!).

The sufficient statistic is:
t ( x ) = x . t(x) = x. t(x)=x.

Binomial Distribution

Probability mass function:
p ( x ∣ n , p ) = ( n x ) p x ( 1 − p ) n − x , x = 0 , 1 , … , n . p(x|n, p) = \binom{n}{x} p^x (1-p)^{n-x}, \quad x = 0, 1, \dots, n. p(xn,p)=(xn)px(1p)nx,x=0,1,,n.

Rewritten in exponential family form:
p ( x ∣ n , p ) = exp ⁡ ( x ln ⁡ p 1 − p + n ln ⁡ ( 1 − p ) + ln ⁡ ( n x ) ) . p(x|n, p) = \exp\left(x \ln \frac{p}{1-p} + n \ln (1-p) + \ln \binom{n}{x}\right). p(xn,p)=exp(xln1pp+nln(1p)+ln(xn)).

The sufficient statistic is:
t ( x ) = x . t(x) = x. t(x)=x.


4. Applications of Sufficient Statistics

4.1 Maximum Likelihood Estimation (MLE)

The likelihood function for parameter ( θ \theta θ ) can be written in terms of the sufficient statistic ( T ( X ) T(X) T(X) ). This simplifies the optimization process in MLE, reducing computational complexity.

For example, for the Poisson distribution, the MLE for ( λ \lambda λ ) is:
λ ^ = ∑ i = 1 n x i n , \hat{\lambda} = \frac{\sum_{i=1}^n x_i}{n}, λ^=ni=1nxi,
where ( T ( X ) = ∑ i = 1 n x i T(X) = \sum_{i=1}^n x_i T(X)=i=1nxi ).

4.2 Bayesian Inference

In Bayesian inference, the posterior distribution depends only on ( T ( X ) T(X) T(X) ):
p ( θ ∣ X ) ∝ p ( T ( X ) ∣ θ ) p ( θ ) . p(\theta|X) \propto p(T(X)|\theta)p(\theta). p(θX)p(T(X)θ)p(θ).

This makes the computation of posterior distributions more tractable, especially in conjugate prior settings.

4.3 Data Summarization

Sufficient statistics compress data into a smaller, sufficient representation. For instance, in large-scale data applications, computing sufficient statistics instead of storing entire datasets saves storage and computational resources.


5. Summary

Sufficient statistics are a cornerstone of statistical inference, enabling efficient parameter estimation and data summarization. By focusing on the exponential family, we can better understand how sufficient statistics operate in various common distributions, such as the normal, Poisson, and binomial distributions.

Understanding and utilizing sufficient statistics not only simplifies complex statistical procedures but also offers practical advantages in data analysis, particularly in settings with large datasets or complex Bayesian models. Readers are encouraged to explore further by deriving sufficient statistics for different distributions and applying them to real-world problems.

相关文章:

充分统计量(Sufficient Statistic)概念与应用: 中英双语

充分统计量:概念与应用 在统计学中,充分统计量(Sufficient Statistic) 是一个核心概念。它是从样本中计算得出的函数,能够完整且无损地表征样本中与分布参数相关的信息。在参数估计中,充分统计量能够帮助我…...

基于Matlab计算机视觉的车道线识别与前车检测系统研究

随着自动驾驶技术的发展,车道线识别和前车检测成为智能驾驶系统中的核心技术之一。本实训报告围绕基于计算机视觉的车道线识别与前车检测系统展开,旨在通过处理交通视频数据,实时检测车辆所在车道及其与前车的相对位置,从而为车道…...

模糊测试中常见的10种变异mutation策略

1. 引入 基于变异策略的模糊测试,有两个重点: (1)seed:种子,初始的合法输入序列。 (2)mutation:对已经存在的输入序列,进行微调。 所以,mutatio…...

opencv-android编译遇到的相关问题处理

1、opencv-android sdk下载 下载地址:https://opencv.org/releases/ 下载安卓SDK即可 2、解压下载好的SDK 3、导入opencv的SDK到安卓项目中 导入步骤在/OpenCV-android-sdk/sdk/build.gradle文件的注释中写的非常详细,大家可安装官方给出的步骤导入。…...

把 py脚本生成windows 可执行的文件

1 确保生成的exe文件,不会立即退出 input("Please input any key to exit!")2 安装 PyInstaller 确保已经安装了 PyInstaller。可以使用 pip 来安装它: pip install pyinstaller3 执行命令 这里的 --onefile 选项表示将所有依赖项打包到一…...

云计算的发展历史与未来展望

云计算的起源与发展 云计算的概念最早可以追溯到20世纪60年代,当时的计算机科学家约翰麦卡锡(John McCarthy)提出了“按需提供计算能力”的构想。尽管这一理念在当时的技术条件下无法实现,但为云计算的未来发展奠定了理论基础。 …...

基于飞腾S2500处理器的全国产加固服务器

近日,西安康德航测电子科技有限公司凭借其深厚的行业底蕴和创新精神,正式推出了基于飞腾S2500处理器的全国产加固服务器。这一产品的问世,不仅标志着我国在信息技术领域的自立自强迈出了坚实的一步,更以其卓越的性能、坚固的设计和…...

gitlab-cicd部署安装与具体操作

一、安装 本例中是用安装包直接在ubuntu下安装的,也可以用docker镜像。 curl -LJO https://gitlab-runner-downloads.s3.amazonaws.com/latest/rpm/gitlab-runner_amd64.rpmrpm -i gitlab-runner_amd64.rpm 安装runner后,需要跟在runner所在服务器安装…...

2022高等代数上【南昌大学】

2022 高等代数 证明: p ( x ) p(x) p(x) 是不可约多项式的充要条件是对任意的多项式 f ( x ) , g ( x ) f(x), g(x) f(x),g(x),若 p ( x ) ∣ f ( x ) g ( x ) p(x) \mid f(x)g(x) p(x)∣f(x)g(x),则有 p ( x ) ∣ f ( x ) p(x) \mid f(x) p(x)∣f(x) 或 p ( x ) ∣ g (…...

文本生成类(机器翻译)系统评估

在机器翻译任务中常用评价指标:BLEU、ROGUE、METEOR、PPL。 这些指标的缺点:只能反应模型输出是否类似于测试文本。 BLUE(Bilingual Evaluation Understudy):是用于评估模型生成的句子(candidate)和实际句子(referen…...

11.7【miniob】【debug】

这里的vector是实际值,而relation是指针,所以要解引用,*$1,并在最后调用其析构函数 emplace_back 和 push_back 都是用于在容器(如 std::vector)的末尾添加元素的方法,但它们的工作方式有所不同…...

OSHI 介绍与使用

OSHI 介绍 OSHI(Operating System and Hardware Information)是一个开源的Java库,用于从操作系统和硬件层面获取系统资源的详细信息。它提供了对操作系统、硬件、CPU、内存、磁盘、网络接口等多种信息的访问,且不依赖于平台特定的…...

Hadoop生态圈框架部署(八)- Hadoop高可用(HA)集群部署

文章目录 前言一、部署规划二、Hadoop HA集群部署(手动部署)1. 下载hadoop2. 上传安装包2. 解压hadoop安装包3. 配置hadoop配置文件3.1 虚拟机hadoop1修改hadoop配置文件3.1.1 修改 hadoop-env.sh 配置文件3.3.2 修改 core-site.xml 配置文件3.3.3 修改 …...

【RocketMQ】Name Server 无状态特点及如何让 Broker Consumer Producer 感知新节点

文章目录 前言1. Name Server 无状态特点2. Name Server 地址服务3. Name Server 手动配置后记 前言 看了 《RocketMQ 消息中间件实战派(上册)》前面一点,书中代码太多容易陷入细节。 这里简单描述下 RocketMQ Name Server 无状态表现在什么…...

蓝牙定位的MATLAB程序,四个锚点、三维空间

这段代码通过RSSI信号强度实现了在三维空间中的蓝牙定位,展示了如何使用锚点位置和测量的信号强度来估计未知点的位置。代码涉及信号衰减模型、距离计算和最小二乘法估计等基本概念,并通过三维可视化展示了真实位置与估计位置的关系。 目录 程序描述 运…...

机器学习--绪论

开启这一系列文章的初衷,是希望搭建一座通向机器学习世界的桥梁,为有志于探索这一领域的读者提供系统性指引和实践经验分享。随着人工智能和大数据技术的迅猛发展,机器学习已成为推动技术创新和社会变革的重要驱动力。从智能推荐系统到自然语…...

Unity 设计模式-命令模式(Command Pattern)详解

命令模式(Command Pattern)是一种行为型设计模式,它将请求封装成对象,从而使得可以使用不同的请求、队列或日志请求,以及支持可撤销的操作。命令模式通常包含四个主要角色:命令(Command&#xf…...

线程信号量 Linux环境 C语言实现

既可以解决多个同类共享资源的互斥问题&#xff0c;也可以解决简易的同步问题 头文件&#xff1a;#include <semaphore.h> 类型&#xff1a;sem_t 初始化&#xff1a;int sem_init(sem_t *sem, int pshared, unsigned int value); //程序中第一次对指定信号量调用p、v操…...

karmada-descheduler

descheduler规则 karmada-descheduler 定期检测所有部署&#xff0c;通常是每2分钟一次&#xff0c;并确定目标调度集群中无法调度的副本数量。它通过调用 karmada-scheduler-estimator 来完成这个过程。如果发现无法调度的副本&#xff0c;它将通过减少 spec.clusters 的配…...

【热门主题】000075 探索嵌入式硬件设计的奥秘

前言&#xff1a;哈喽&#xff0c;大家好&#xff0c;今天给大家分享一篇文章&#xff01;并提供具体代码帮助大家深入理解&#xff0c;彻底掌握&#xff01;创作不易&#xff0c;如果能帮助到大家或者给大家一些灵感和启发&#xff0c;欢迎收藏关注哦 &#x1f495; 目录 【热…...

Android okhttp请求

下面是一个用 OkHttp 封装的 GET 请求方法&#xff0c;适用于 Android 项目。该方法包括基本的网络请求、错误处理&#xff0c;并支持通过回调返回结果。 封装 GET 请求的工具类 添加依赖 在你的 build.gradle 文件中&#xff0c;确保添加了 OkHttp 的依赖&#xff1a; imple…...

嵌入式蓝桥杯学习4 lcd移植

cubemx配置 复制前面配置过的文件 打开cubemx&#xff0c;将PB8,PB9配置为GPIO-Output。 点击GENERATE CODE. 文件移植 1.打开比赛提供的文件包&#xff0c;点击Inc文件夹 2.点击Inc文件夹。复制fonts.h和lcd.h&#xff0c;粘贴到我们自己的工程文件夹的bsp中&#xff08…...

电子应用设计方案-38:智能语音系统方案设计

智能语音系统方案设计 一、引言 智能语音系统作为一种便捷、自然的人机交互方式&#xff0c;正逐渐在各个领域得到广泛应用。本方案旨在设计一个高效、准确、功能丰富的智能语音系统。 二、系统概述 1. 系统目标 - 实现高准确率的语音识别和自然流畅的语音合成。 - 支持多种语…...

渗透测试:网络安全的深度探索

一、引言 在当今数字化时代&#xff0c;网络安全问题日益凸显。企业和组织面临着来自各种恶意攻击者的威胁&#xff0c;他们试图窃取敏感信息、破坏系统或进行其他恶意活动。渗透测试作为一种主动的安全评估方法&#xff0c;能够帮助企业发现潜在的安全漏洞&#xff0c;提高网…...

基于SpringBoot的“小区物业管理系统”的设计与实现(源码+数据库+文档+PPT)

基于SpringBoot的“小区物业管理系统”的设计与实现&#xff08;源码数据库文档PPT) 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#xff1a;SpringBoot 工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 系统展示 系统功能结构图 个人信息界面图 费用信息管理…...

调试android 指纹遇到的坑

Android8以后版本 一、指纹服务不能自动 指纹服务fingerprintd(biometrics fingerprintservice)&#xff0c;可以手动起来&#xff0c;但是在init.rc中无法启动。 解决办法&#xff1a; 1.抓取开机时kernel log &#xff0c;确认我们的启动指纹服务的init.rc 文件有被init.c…...

剑指offer(专项突破)---字符串

总目录&#xff1a;剑指offer&#xff08;专项突破&#xff09;---目录-CSDN博客 1.字符串的基本知识 C语言中&#xff1a; 函数名功能描述strcpy(s1, s2)将字符串s2复制到字符串s1中&#xff0c;包括结束符\0&#xff0c;要求s1有足够空间容纳s2的内容。strncpy(s1, s2, n)…...

【springboot】 多数据源实现

文章目录 1. 引言&#xff1a;多数据源的必要性和应用场景**为什么需要多数据源&#xff1f;****应用场景** 2. Spring Boot中的数据源配置2.1 默认数据源配置简介2.2 如何在Spring Boot中配置多个数据源 3. 整合MyBatis与多数据源**配置MyBatis使用多数据源****Mapper接口的数…...

多模态COGMEN详解

✨✨ 欢迎大家来访Srlua的博文&#xff08;づ&#xffe3;3&#xffe3;&#xff09;づ╭❤&#xff5e;✨✨ &#x1f31f;&#x1f31f; 欢迎各位亲爱的读者&#xff0c;感谢你们抽出宝贵的时间来阅读我的文章。 我是Srlua小谢&#xff0c;在这里我会分享我的知识和经验。&am…...

django 实战(python 3.x/django 3/sqlite)

要在 Python 3.x 环境中使用 Django 3.2 和 SQLite 创建一个新的 Django 项目&#xff0c;你可以按照以下步骤进行操作。这些步骤假设你已经安装了 Python 3.x 和 pip。 1. 设置虚拟环境 首先&#xff0c;建议为你的 Django 项目创建一个虚拟环境&#xff0c;以便隔离项目的依…...