2021数学分析【南昌大学】
2021 数学分析
-
求极限
lim n → ∞ 1 n ( n + 1 ) ( n + 2 ) ⋯ ( n + n ) n \lim_{n \to \infty} \frac{1}{n} \sqrt [n]{(n+1)(n+2) \cdots (n+n)} n→∞limn1n(n+1)(n+2)⋯(n+n)
lim n → ∞ 1 n ( n + 1 ) ( n + 2 ) ⋯ ( n + n ) n = lim n → ∞ ( n + 1 ) ( n + 2 ) ⋯ ( n + n ) n m n = lim n → ∞ e 1 n ∑ k = 1 n ln ( 1 + k n ) = e ∫ 0 1 ln ( 1 + x ) d x = e 2 l n 2 − 1 \begin{align*} \mathop {\lim }\limits_{n \to \infty } \frac{1}{n} \sqrt [n]{{(n + 1)(n + 2) \cdots (n + n)}} &= \mathop {\lim }\limits_{n \to \infty } \sqrt [n]{{\frac{{(n + 1)(n + 2) \cdots (n + n)}}{{n^m}}}} \\ &= \mathop {\lim }\limits_{n \to \infty } e^{\frac{1}{n} \sum\limits_{k = 1}^n \ln\left( 1 + \frac{k}{n} \right)} \\ &= e^{\int_0^1 \ln\left( 1 + x \right) dx} \\ &= e^{2ln2-1} \\ \end{align*} n→∞limn1n(n+1)(n+2)⋯(n+n)=n→∞limnnm(n+1)(n+2)⋯(n+n)=n→∞limen1k=1∑nln(1+nk)=e∫01ln(1+x)dx=e2ln2−1
-
求 a , b a, b a,b 的值,使得
lim x → 0 1 b x − sin x ∫ 0 x t 2 a + t 2 d t = 1. \lim_{x \to 0} \frac{1}{bx - \sin x} \int_0^x \frac{t^2}{\sqrt{a + t^2}} \, dt = 1. x→0limbx−sinx1∫0xa+t2t2dt=1.
lim x → 0 ∫ 0 x t 2 a + t 2 d t b x − sin x = lim x → 0 x 2 ( b − cos x ) a + x 2 = lim x → 0 x 2 ( b − 1 + 1 2 x 2 + o ( x 2 ) ) ( a + 1 2 a x 2 + o ( x 2 ) ) = lim x → 0 x 2 ( ( b − 1 ) a + 1 2 ( a + b − 1 a ) x 2 + o ( x 2 ) ) = 1 \begin{aligned} \mathop{\lim}\limits_{x \to 0} \frac{\int_0^x \frac{t^2}{\sqrt{a + t^2}} \, dt}{bx - \sin x} &= \mathop{\lim}\limits_{x \to 0} \frac{x^2}{\left( b - \cos x \right) \sqrt{a + x^2}} \\ &= \mathop{\lim}\limits_{x \to 0} \frac{x^2}{\left( b - 1 + \frac{1}{2}x^2 + o(x^2) \right)\left( \sqrt{a} + \frac{1}{2\sqrt{a}}x^2 + o(x^2) \right)} \\ &= \mathop{\lim}\limits_{x \to 0} \frac{x^2}{\left( \left( b - 1 \right)\sqrt{a} + \frac{1}{2}\left( \sqrt{a} + \frac{b - 1}{\sqrt{a}} \right)x^2 + o(x^2) \right)} \\ &= 1 \end{aligned} x→0limbx−sinx∫0xa+t2t2dt=x→0lim(b−cosx)a+x2x2=x→0lim(b−1+21x2+o(x2))(a+2a1x2+o(x2))x2=x→0lim((b−1)a+21(a+ab−1)x2+o(x2))x2=1
当 a ≠ 0 a\ne0 a=0
解得 ( b − 1 ) a = 0 (b-1)\sqrt{a}=0 (b−1)a=0 ,且 1 2 ( a + b − 1 a ) = 1 \frac{1}{2}\left( \sqrt{a} + \frac{b - 1}{\sqrt{a}} \right)=1 21(a+ab−1)=1
故 b = 1 b=1 b=1, a = 4 a=4 a=4
当 a = 0 a=0 a=0,极限不成立
- 用定义法证明 y = x 2 y = x^2 y=x2 在 ( − 1 , 2 ) (-1, 2) (−1,2) 上一致连续,在 ( 0 , + ∞ ) (0, +\infty) (0,+∞) 上不一致连续。
任取 x 1 , x 2 ∈ ( − 1 , 2 ) x_1,x_2 \in(-1,2) x1,x2∈(−1,2),要使不等式
∣ x 2 2 − x 1 2 ∣ = ∣ x 2 − x 1 ∣ ∣ x 2 + x 1 ∣ ≤ 4 ∣ x 2 − x 1 ∣ < ε \left| x_2^2 - x_1^2 \right| = \left| x_2 - x_1 \right| \left| x_2 + x_1 \right| \leq 4\left| x_2 - x_1 \right| < \varepsilon x22−x12 =∣x2−x1∣∣x2+x1∣≤4∣x2−x1∣<ε
成立,解得 ∣ x 2 − x 1 ∣ < ε 4 \left| x_2 - x_1 \right| < \frac{\varepsilon}{4} ∣x2−x1∣<4ε,取 δ 1 = ε 4 \delta_1= \frac{\varepsilon}{4} δ1=4ε
则 ∀ x 1 , x 2 ∈ ( − 1 , 2 ) \forall x_1,x_2 \in(-1,2) ∀x1,x2∈(−1,2),当 ∣ x 2 − x 1 ∣ < δ 1 \left| x_2 - x_1 \right| <\delta_1 ∣x2−x1∣<δ1,有 ∣ x 2 2 − x 1 2 ∣ < ε \left| x_2^2 - x_1^2 \right| < \varepsilon x22−x12 <ε,故在 ( − 1 , 2 ) (-1, 2) (−1,2) 上一致连续
取 x n = n x_n=\sqrt n xn=n, y n = n + 1 y_n=\sqrt {n+1} yn=n+1
lim n → ∞ ( y n − x n ) = lim n → ∞ ( n + 1 − n ) = lim n → ∞ 1 n + 1 + n = 0 \begin{aligned} \mathop{\lim}\limits_{n \to \infty} (y_n - x_n) &= \mathop{\lim}\limits_{n \to \infty} \left( \sqrt{n+1} - \sqrt{n} \right) \\ &= \mathop{\lim}\limits_{n \to \infty} \frac{1}{\sqrt{n+1} + \sqrt{n}} \\ &= 0 \end{aligned} n→∞lim(y
相关文章:

2021数学分析【南昌大学】
2021 数学分析 求极限 lim n → ∞ 1 n ( n + 1 ) ( n + 2 ) ⋯ ( n + n ) n \lim_{n \to \infty} \frac{1}{n} \sqrt [n]{(n+1)(n+2) \cdots (n+n)} n→∞limn1n(n+1)(n+2)⋯(n+n) lim n → ∞ 1 n ( n + 1 ) ( n + 2 ) ⋯ ( n + n ) n = lim n → ∞ ( n + …...

单端和差分信号的接线法
内容来源:【单端信号 差分信号与数据采集卡的【RSE】【 NRES】【 DIFF】 模式的连接】 此篇文章仅作笔记分享。 单端输入 单端信号指的是输入信号由一个参考端和一个信号端构成,参考端一般是地端,信号就是通过计算信号端口和地端的差值所得…...

力扣-图论-2【算法学习day.52】
前言 ###我做这类文章一个重要的目的还是给正在学习的大家提供方向和记录学习过程(例如想要掌握基础用法,该刷哪些题?)我的解析也不会做的非常详细,只会提供思路和一些关键点,力扣上的大佬们的题解质量是非…...
MySQL如何区分幻读和不可重复读
在MySQL中,幻读和不可重复读都是并发事务中可能出现的问题,但它们的表现和原因略有不同。 不可重复读 (Non-Repeatable Read) 不可重复读是指在同一个事务内,多次读取同一行数据时,可能会得到不同的结果。这种情况发生在一个事务…...

界面控件Syncfusion Essential Studio®现在已完全支持 .NET 9
Syncfusion Essential Studio现在完全支持 .NET 9,可最新版本2024 Volume 3 版本中使用!通过此更新,Blazor、.NET MAUI、WPF、WinForms、WinUI和ASP.NET Core 平台中的 Syncfusion 组件以及文档处理库已准备好让您利用 .NET 9 中的最新功能。…...

openEuler安装lsb_release
lsb_release是linux下查看发行版信息用的工具 lsb_release只是一个小程序,它的包名并不是lsb_release lsb_release其实是红帽的一个项目,其名为redhat-lsb 我们的lsb_release就是其中的一部分,更准确的说是redhat-lsb-core 从网站࿱…...

统计数字字符个数
统计数字字符个数 C语言实现C实现Java实现Python实现 💐The Begin💐点点关注,收藏不迷路💐 输入一行字符,统计出其中数字字符的个数。 输入 一行字符串,总长度不超过255。 输出 出为1行,输出…...

44页PDF | 信息化战略规划标准框架方法论与实施方法(限免下载)
一、前言 这份报告详细介绍了企业信息化战略规划的标准框架、方法论以及实施方法,强调了信息化规划应以业务战略和IT战略为驱动力,通过构筑企业架构(EA)来连接长期战略和信息化建设。报告提出了信息化规划原则,探讨了…...

计算机网络期末复习-part1-概述
1、互联网的组成 互联网由两大块组成。 1、边沿部分:由所有连接在互联网上的主机组成,是用户直接使用的部分。 2、核心部分,由大量网络和路由器组成,为边缘部分提供服务。 2、数据传送阶段的三种交换方式的主要特点 1、电路交…...

A1228 php+Mysql旅游供需平台的设计与实现 导游接单 旅游订单 旅游分享网站 thinkphp框架 源码 配置 文档 全套资料
旅游供需平台 1.项目描述2. 开发背景与意义3.项目功能4.界面展示5.源码获取 1.项目描述 随着社会经济的快速发展,生活水平的提高,人们对旅游的需求日益增强,因此,为给用户提供一个便利的查看导游信息,进行导游招募的平…...
RabbitMQ消息可靠性保证机制5--消息幂等性处理
RabbitMQ层面有实现“去重机制”来保证“恰好一次”吗?答案是没并没有,而且现在主流的消息中间件都没有实现。 一般解决重复消息的办法是:在消费端让我们消费消息操作具有幂等性。 幂等性问题并不是消息系统独有,而是࿰…...

Claude3.5如何使用?
Claude 3.5 Sonnet,性能直接吊打了 GPT-4o,甚至价格还更便宜。网友们纷纷展开实测,有人表示自己一半的工作已经可以由它替代了!而最让人惊喜的新功能,莫过于 Artifacts 了。 就在昨天,Anthropic 深夜发布了…...
力扣刷题TOP101:14.BM16 删除有序链表中重复的元素-II
目录: 目的 思路 复杂度 记忆秘诀 python代码 目的 1→1→2→3→3 删除重复后变成2。 思路 这个任务是删除链表里重复的节点包含本身。可以看成是一个抽奖活动的系统升级。某人通过多种方式报名(节点不同),后台数据检测到这些…...

解决github网络慢的问题
前言 本文采用替换host的方式来加速github的git请求,主要我自己用来备份的懒人方式,不然每次都要手动修改hosts文件,skrskrskr… 一、获取到可用的ip 先到这个网站查询到低延迟的ip 站长工具:https://ping.chinaz.com/ 第2步&…...
docker及docker exec命令学习笔记
docker exec 是一个常用的 Docker 命令,允许你在已经运行的容器中执行命令或启动新的进程。以下是详细介绍和常见用法: 基本语法 docker exec [OPTIONS] CONTAINER COMMAND [ARG...]参数详解 1. CONTAINER指定目标容器的名字或容器 ID。可以通过以下命…...

linux环境宝塔服务部署安装及介绍
一、简介 宝塔面板是一款服务器管理软件,支持windows和linux系统,可以通过Web端轻松管理服务器,提升运维效率。例如:创建管理网站、FTP、数据库,拥有可视化文件管理器,可视化软件管理器,可视化C…...
充分统计量(Sufficient Statistic)概念与应用: 中英双语
充分统计量:概念与应用 在统计学中,充分统计量(Sufficient Statistic) 是一个核心概念。它是从样本中计算得出的函数,能够完整且无损地表征样本中与分布参数相关的信息。在参数估计中,充分统计量能够帮助我…...

基于Matlab计算机视觉的车道线识别与前车检测系统研究
随着自动驾驶技术的发展,车道线识别和前车检测成为智能驾驶系统中的核心技术之一。本实训报告围绕基于计算机视觉的车道线识别与前车检测系统展开,旨在通过处理交通视频数据,实时检测车辆所在车道及其与前车的相对位置,从而为车道…...
模糊测试中常见的10种变异mutation策略
1. 引入 基于变异策略的模糊测试,有两个重点: (1)seed:种子,初始的合法输入序列。 (2)mutation:对已经存在的输入序列,进行微调。 所以,mutatio…...

opencv-android编译遇到的相关问题处理
1、opencv-android sdk下载 下载地址:https://opencv.org/releases/ 下载安卓SDK即可 2、解压下载好的SDK 3、导入opencv的SDK到安卓项目中 导入步骤在/OpenCV-android-sdk/sdk/build.gradle文件的注释中写的非常详细,大家可安装官方给出的步骤导入。…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

Xshell远程连接Kali(默认 | 私钥)Note版
前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

工业安全零事故的智能守护者:一体化AI智能安防平台
前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...

python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...

前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...

家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...

【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...

Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...