【实分析】【二】2.2 (c)自然数的序
文章目录
- 前言
- 一、自然数的序的定义
- 二、自然数的序的基本性质
- 三、序的三歧性
- 四、强归纳法原理
- 总结
前言
在2.2 (b)的末尾,我们定义了自然数的正性,现在,我们来定义自然数的序,它是一种自然数的二元关系,通过加法进行定义。
一、自然数的序的定义
自然数的序定义如下:设n和m是自然数,我们称n大于等于m,记为 n ≥ m , m ≤ n n\geq m, m\leq n n≥m,m≤n,当且仅当存在自然数a,使得 n = m + a n=m+a n=m+a;我们称n严格大于m,记为 n > m , m < n n> m,m< n n>m,m<n,当且仅当 n ≥ m , n ≠ m n\geq m, n\neq m n≥m,n=m。
这个定义理解起来还是非常直观易懂的,没有需要过多赘述的地方。由于任意一个自然数 x x x都可以找到自然数x,使得 x = 0 + x x=0+x x=0+x,所以有 0 ≤ x 0\le x 0≤x。而对任意正自然数也就有 0 < x 0<x 0<x。
二、自然数的序的基本性质
下面我们来看序的基本性质:
a. (序是自反的) a ≥ a a\geq a a≥a
b. (序是传递的) a ≥ b , b ≥ c a\geq b, b\geq c a≥b,b≥c, 则 a ≥ c a\geq c a≥c
c. (序是反对称的) a ≥ b , b ≥ a a\geq b, b\geq a a≥b,b≥a,则 a = b a=b a=b
d. (加法保序) a ≥ b a\geq b a≥b,当且仅当 a + c ≥ b + c a+c\geq b+c a+c≥b+c
e. a < b a<b a<b,当且仅当 a + + ≤ b a++\le b a++≤b
f. a < b a<b a<b,当且仅当存在某个正数 d d d 满足 b = a + d b=a+d b=a+d
这些基本性质都很符合直观理解,证明也都比较简单,我们来依次证明一下:
a. 证明: ∃ \exist ∃ 自然数0,使得 a + 0 = a a+0=a a+0=a, ∴ a ≥ a \therefore a\geq a ∴a≥a
b. 证明: ∵ a ≥ b , b ≥ c \because a\ge b, b\ge c ∵a≥b,b≥c,
∴ ∃ \therefore \exist ∴∃ 自然数 x , y x, y x,y 满足 a = b + x , b = c + y a=b+x, b=c+y a=b+x,b=c+y
∴ a = c + y + x \therefore a=c+y+x ∴a=c+y+x
∴ a ≥ c \therefore a\geq c ∴a≥c
c. 证明:$\exist $ 自然数 x , y x,y x,y 满足 a = b + x , b = a + y a=b+x, b=a+y a=b+x,b=a+y
∴ a = a + y + x \therefore a=a+y+x ∴a=a+y+x,由消去律有: 0 = x + y 0=x+y 0=x+y
∴ x = y = 0 , a = b \therefore x=y=0, a=b ∴x=y=0,a=b
d. 证明:i). “=>” ∵ a ≥ b \because a\geq b ∵a≥b
∴ a = b + x , a + c = b + c + x \therefore a=b+x, a+c=b+c+x ∴a=b+x,a+c=b+c+x
∴ a + c ≥ b + c \therefore a+c\geq b+c ∴a+c≥b+c
ii). “<=” ∵ a + c ≥ b + c \because a+c\geq b+c ∵a+c≥b+c
∴ a + c = b + c + x \therefore a+c=b+c+x ∴a+c=b+c+x,由消去律有: a = b + x a=b+x a=b+x
∴ a ≥ b \therefore a\geq b ∴a≥b
e. 证明:i). “=>” ∵ a < b \because a< b ∵a<b,
∴ b = a + x \therefore b=a+x ∴b=a+x
假设 x = 0 x=0 x=0,则有 a = b a=b a=b,矛盾!因此 x x x为正。
∴ ∃ \therefore \exist ∴∃ 自然数 y y y 满足 x = y + + x=y++ x=y++
∴ b = a + y + + = ( a + + ) + y \therefore b=a+y++=(a++)+y ∴b=a+y++=(a++)+y
∴ a + + ≤ b \therefore a++\le b ∴a++≤b
ii). “<=” ∵ a + + ≤ b \because a++\le b ∵a++≤b
∴ b = ( a + + ) + x = a + x + + \therefore b=(a++)+x=a+x++ ∴b=(a++)+x=a+x++
∴ a ≤ b \therefore a\le b ∴a≤b
假设 a = b a=b a=b,则 a = a + x + + a=a+x++ a=a+x++,由消去律有 0 = x + + 0=x++ 0=x++
由Peano公理可知,0不是任何自然数的后继,矛盾!因此 a ≠ b a\neq b a=b
∴ a < b \therefore a<b ∴a<b
f. 证明:i). “=>” ∵ a < b \because a<b ∵a<b
∴ b = a + d \therefore b=a+d ∴b=a+d. 由e中可知 d d d为正。
ii). “<=” ∵ b = a + d \because b=a+d ∵b=a+d
∴ a ≤ b \therefore a\le b ∴a≤b
假设 a = b ,则有 a = a + d , 0 = d 假设a=b,则有a=a+d,0=d 假设a=b,则有a=a+d,0=d,矛盾!因此, a ≠ b a\neq b a=b
∴ a < b \therefore a<b ∴a<b
这些性质的证明都不难,把之前已经掌握的推论命题都利用一下就能轻松得证。
三、序的三歧性
所谓序的三歧性是指对于任意两个自然数 a , b a,b a,b,下列三个命题恰有一个为真: a < b , a = b , a > b a<b,a=b,a>b a<b,a=b,a>b。
这个性质也就决定了自然数之间的序的关系只能是这三种情况中的一种。这个性质证明也不难,**证明思路如下:**由序的定义,容易知道第一个和第三个命题均与第二个命题是互斥的,则他们无法同时为真。然后再说明第一第三也无法同时为真,则说明了只能有一个命题为真。后面再证至少一个命题为真即可。
证明:i) ∵ a < b = > a ≠ b , a > b = > a ≠ b \because a<b =>a\neq b, a>b => a\neq b ∵a<b=>a=b,a>b=>a=b
∴ a = b \therefore a=b ∴a=b 与 a < b a<b a<b 或者 a > b a>b a>b 不同时为真。
假设 a < b , a > b a<b, a>b a<b,a>b同时为真
∵ a < b = > a ≤ b , a > b = > a ≥ b \because a<b => a\leq b, a>b => a\ge b ∵a<b=>a≤b,a>b=>a≥b
∴ a = b \therefore a=b ∴a=b 矛盾!因此任意两个命题不同时为真。
ii) 固定b,对a使用归纳法证明三个命题中至少一个为真:
验证 P ( 0 ) P(0) P(0) 为真:若b为0,则 a = b = 0 a=b=0 a=b=0为真。若b为正数,则 b > a = 0 b>a=0 b>a=0为真。
设 P ( a ) P(a) P(a) 为真,则有三个命题中至少一个为真。
下证 P ( a + + ) P(a++) P(a++)为真:
- 若 a = b a=b a=b 为真,则有 a + + = b + + = b + 1 a++=b++=b+1 a++=b++=b+1, ∵ 1 \because 1 ∵1 为正
∴ a + + > b \therefore a++>b ∴a++>b 为真- 若 a > b a>b a>b 为真,则 ∃ \exist ∃ 正数 x x x 满足 a = b + x a=b+x a=b+x
∴ a + + = ( b + x ) + + = b + x + + \therefore a++ = (b+x)++=b+x++ ∴a++=(b+x)++=b+x++,
由Peano公理可知 ∵ x + + \because x++ ∵x++ 为正,则 a + + > b a++>b a++>b 为真- 若 a < b a<b a<b 为真,由序的基本性质 e 可知 a + + ≤ b a++\le b a++≤b
∴ ∃ \therefore \exist ∴∃ 自然数 x x x 满足 b = x + a + + b=x+a++ b=x+a++
若 x 为0,则有 b = a + + b=a++ b=a++为真;若 x 为正,由序的基本性质 f 有 b > a + + b>a++ b>a++为真。
由消去律易知这样的 x 是唯一的,而自然数 x 只能为0或者不是0(即为正)。
∴ b > a + + , b = a + + \therefore b>a++, b=a++ ∴b>a++,b=a++ 至少有一个为真。
因此, a + + > b , a + + = b , a + + < b a++>b,a++=b,a++<b a++>b,a++=b,a++<b至少有一个为真 。
从而,如上三个命题有且只有一个为真。
有了这个三歧性,以后对于自然数之间的序关系就可以使用排除法来分析,即若已知其中两个命题为假,第三个命题必为真。同样若一个命题为真,则另外两个必为假。
四、强归纳法原理
由序的性质,可以得到归纳法原理的更强形式——强归纳原理:
设 m 0 m_0 m0 是一个自然数,而 P ( m ) P(m) P(m) 是依赖于自然数 m 的一个性质。 设对于每个 m ≤ m 0 m\le m_0 m≤m0 都有 若 ∀ m 0 ≤ m ′ < m , P ( m ′ ) \forall m_0\le m'< m, P(m') ∀m0≤m′<m,P(m′) 为真,则 P ( m ) P(m) P(m) 也为真 的关系,(特别的,当 m = m 0 m=m_0 m=m0 时,条件为空,因此 P ( m 0 ) P(m_0) P(m0) 为真)则可以断定 P ( m ) P(m) P(m) 对 ∀ m ≥ m 0 \forall m\ge m_0 ∀m≥m0成立。
对比强归纳原理与2.1 Peano公理中的弱归纳原理,可以看到在起始条件上,不再是从0开始归纳,而是可以从任意使得性质 P ( m 0 ) P(m_0) P(m0) 为真的自然数 m 0 m_0 m0 开始。其次,在归纳性上,也放宽了要求:
弱归纳法的归纳性要求:必须仅仅依靠 P ( n ) P(n) P(n) 为真,就推出 P ( n + + ) P(n++) P(n++) 为真。
强归纳法的归纳性要求:可以借助 P ( m ′ ) P(m') P(m′) 为真,推出 P ( m ) P(m) P(m) 为真。
这两个归纳法的强弱的理解可能稍微有点绕,我们简单梳理一下:弱归纳法的归纳性要求中给定的条件更少(只有 P ( n ) P(n) P(n) 为真),需要能够推出的结论确实相同(即P对下一个自然数为真),所以该归纳法对性质P具有更严苛的要求,所以该归纳法能适用的情况更少,也就是更弱。
其实,当性质P满足若归纳法的归纳性要求时,则必然满足强归纳法的归纳性要求。如果只需要 P ( n ) P(n) P(n) 为真就能推出 P ( n + + ) P(n++) P(n++) 为真,则加上前面的多余条件也一样可以推出 P ( n + + ) P(n++) P(n++) 为真。
啰嗦了这么久,理清了强弱归纳法的关系,下面我们来证明一下强归纳原理。首先整理一下证需要证明的内容:若一个性质对自然数满足强归纳性要求,且存在某个起始自然数 m 0 m_0 m0 为真,那么借由这种强归纳性需要能够推出该性质对任意大于起始自然数的自然数为真。
要证明强归纳原理,势必要往弱归纳原理上靠,所以需要把强归纳性中要求的对一群自然数成立的条件变成对单个自然数成立,且这个单个自然数还必须是我们的归纳对象,从而可以使用弱归纳法进行归纳推理。因此将 P ( m ′ ) P(m') P(m′) 对一切 m 0 ≤ m ′ < m m_0\le m'<m m0≤m′<m 打包成一个性质 Q ( m ) Q(m) Q(m)。只要证明 Q ( m ) Q(m) Q(m) 对任意自然数为真即可。
证明:定义性质 Q ( m ) Q(m) Q(m) 表示: P ( m ) P(m) P(m) 对一切 m 0 ≤ m ′ < m m_0\le m'<m m0≤m′<m 成立。当 m < m 0 m<m_0 m<m0时, m ′ m' m′ 为空集, P ( m ′ ) P(m') P(m′) 为真, Q ( m ) Q(m) Q(m) 也为真。(可以这么考虑,空集中找不出任意元素使得P为假。)
对 m m m 进行归纳。
∴ Q ( 0 ) 为真 \therefore Q(0) 为真 ∴Q(0)为真
设 Q ( m ) Q(m) Q(m) 为真,则有 P ( m ′ ) P(m') P(m′) 对一切 m 0 ≤ m ′ < m m_0\le m'<m m0≤m′<m 为真
下证 Q ( m + + ) Q(m++) Q(m++) 为真:
由强归纳法的归纳性可知,若 P ( m ′ ) P(m') P(m′) 对一切 m 0 ≤ m ′ < m m_0\le m'<m m0≤m′<m 为真,则有 P ( m ) P(m) P(m) 为真。
∴ P ( m ′ ) \therefore P(m') ∴P(m′) 对一切 m 0 ≤ m ′ < m + + m_0\le m'< m++ m0≤m′<m++ 为真。即 Q ( m + + ) Q(m++) Q(m++) 为真。
由Peano公理中的归纳法原理可知, Q ( m ) Q(m) Q(m) 对一切自然数都为真。
即 P ( m ′ ) P(m') P(m′) 对一切 m 0 ≤ m ′ < m m_0\le m'<m m0≤m′<m 对 ∀ m \forall m ∀m 都为真。
∵ ∀ m ′ \because \forall m' ∵∀m′,我们总能找到自然数 m,使得 m ′ < m m'<m m′<m成立
∴ \therefore ∴ 上述命题对 ∀ m ′ ≥ m 0 \forall m'\ge m_0 ∀m′≥m0 均为真。
不知道是否有人会有这样的疑惑:强归纳法只要能够通过对一堆自然数成立,推导下一个自然数成立,然后再重复,不就可以推导对所有自然数成立了吗,为什么还需要证明?
个人思考:这种多米诺骨牌式的归纳推理确实是直观上容易接受的,但是弱归纳原理是一个公理,它给出了归纳法的基本框架,让我们只需要证明性质具有弱归纳性就可以推导出对全部自然数成立。因为公理中规定了自然数需要具有这种被递推归纳的性质。而强归纳原理的归纳性要求并不等同于归纳原理中的内容,也就无法直接借助公理得出对全部自然数成立的结论(这里的讨论我们暂时忽略起始自然数的问题)。一点浅薄的理解,望批评指正。
总结
本文把加法的最后一点小尾巴,自然数的序收尾了,并且介绍了强归纳法原理。
相关文章:
【实分析】【二】2.2 (c)自然数的序
文章目录 前言一、自然数的序的定义二、自然数的序的基本性质三、序的三歧性四、强归纳法原理总结 前言 在2.2 (b)的末尾,我们定义了自然数的正性,现在,我们来定义自然数的序,它是一种自然数的二元关系,通过加法进行定…...
STM32串口接收与发送(关于为什么接收不需要中断而发生需要以及HAL_UART_Transmit和HAL_UART_Transmit_IT的区别)
一、HAL_UART_Transmit和HAL_UART_Transmit_IT的区别 1. HAL_UART_Transmit_IT(非阻塞模式): HAL_UART_Transmit_IT 是非阻塞的传输函数,也就是说,当你调用 HAL_UART_Transmit_IT 时,它不会等到数据完全发…...
k8s 之storageclass使用nfs动态申请PV
文章目录 配置角色权限部署nfs-client-provisioner创建 NFS StorageClass创建 PVC 来动态申请 PV在 Pod 中使用 PVC验证存储是否正确挂载使用 kubectl 和 jq 筛选 PVCwaiting for a volume to be created, either by external provisioner "nfs-diy" or manually cre…...
vue移动端实现下载(截图)功能
前言 通过html2canvas实现截图功能然后保存 简介 html2canvas库允许我们直接在浏览器上拍摄网页或部分网页的“截图”,即浏览器实现截图的功能。 原理 屏幕截图是基于DO的。其基本原理就是读取已经渲染好的DOM元素的结构和样式信息,然后基于这些信息…...
【Golang】Golang基础语法之面向对象:结构体和方法
面向对象——结构 Go 仅支持封装,不支持继承和多态;继承和多态要做的事情交给接口来完成,即——面向接口编程。Go 只有 struct,没有 class。 定义一个最简单的树节点(treeNode)结构,方法如下&…...
【西门子PLC.博途】——在S71200里写时间设置和读取功能块
之前我们在这篇文章中介绍过如何读取PLC的系统时间。我们来看看在西门子1200里面有什么区别。同时也欢迎关注gzh。 我们在S71200的帮助文档中搜索时间后找到这个数据类型 在博途中他是一个结构体,具体为 然后我们再看看它带的读取和写入时间块 读取时间࿱…...
位运算(一)位运算简单总结
191. 位1的个数 给定一个正整数 n,编写一个函数,获取一个正整数的二进制形式并返回其二进制表达式中 设置位 的个数(也被称为 汉明重量)。 示例 1: 输入:n 11 输出:3 解释:输入的二…...
工厂方法模式的理解和实践
在软件开发中,设计模式是一种经过验证的解决特定问题的通用方案。工厂方法模式(Factory Method Pattern)是创建型设计模式之一,它提供了一种创建对象的接口,但由子类决定要实例化的类是哪一个。工厂方法让类的实例化推…...
C# 设计模式--观察者模式 (Observer Pattern)
定义 观察者模式是一种行为设计模式,它定义了对象之间的一对多依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都会得到通知并自动更新。观察者模式的核心在于解耦主题(被观察者)和观察者之间的依赖关系。 …...
【开发语言】层次状态机(HSM)介绍
层次状态机(Hierarchical State Machine, HSM),从基本原理、结构设计、实现方法以及如何结合 Qt 进行具体实现等方面进行分析。 1. 层次状态机的基本原理 层次状态机是一种用于管理复杂系统行为的状态机模型,它通过将状态组织成…...
03-13、SpringCloud Alibaba第十三章,升级篇,服务降级、熔断和限流Sentinel
SpringCloud Alibaba第十三章,升级篇,服务降级、熔断和限流Sentinel 一、Sentinel概述 1、Sentinel是什么 随着微服务的流行,服务和服务之间的稳定性变得越来越重要。Sentinel 以流量为切入点,从流量控制、熔断降级、系统负载保…...
【k8s 深入学习之 event 聚合】event count累记聚合(采用 Patch),Message 聚合形成聚合 event(采用Create)
参考 15.深入k8s:Event事件处理及其源码分析 - luozhiyun - 博客园event 模块总览 EventRecorder:是事件生成者,k8s组件通过调用它的方法来生成事件;EventBroadcaster:事件广播器,负责消费EventRecorder产生的事件,然后分发给broadcasterWatcher;broadcasterWatcher:用…...
leetcode104.二叉树的最大深度
给定一个二叉树 root ,返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 示例 1: 输入:root [3,9,20,null,null,15,7] 输出:3示例 2: 输入:root [1,null,2] 输出…...
蓝桥杯2117砍竹子(简单易懂 包看包会版)
问题描述 这天, 小明在砍竹子, 他面前有 n 棵竹子排成一排, 一开始第 i 棵竹子的 高度为 hi. 他觉得一棵一棵砍太慢了, 决定使用魔法来砍竹子。魔法可以对连续的一 段相同高度的竹子使用, 假设这一段竹子的高度为 H, 那么 用一次魔法可以 把这一段竹子的高度都变为 ⌊H2⌋…...
LCD与lvgl
LCD与lvgl 目录 LCD与lvgl 回顾 LCD 的驱动层讲解 1、LCD 的常见接口 2、我们的 LCD 的参数 3、LCD 的设备树说明 4、LCD 的设备树说明 5、如何移植 LCD 的驱动(重点) LCD 的应用层开发 1:LCD 应用开发->界面开发的方法 2:LVGL 模拟器安装 3:LVGL 工程创建和…...
SpringBoot 赋能:精铸超稳会员制医疗预约系统,夯实就医数据根基
1绪论 1.1开发背景 传统的管理方式都在使用手工记录的方式进行记录,这种方式耗时,而且对于信息量比较大的情况想要快速查找某一信息非常慢,对于会员制医疗预约服务信息的统计获取比较繁琐,随着网络技术的发展,采用电脑…...
android studio 读写文件操作(应用场景二)
android studio版本:2023.3.1 patch2 例程:readtextviewIDsaveandread 本例程是个过渡例程,如果单是实现下图的目的有更简单的方法,但这个方法是下一步工作的基础,所以一定要做。 例程功能:将两个textvi…...
小尺寸低功耗蓝牙模块在光伏清扫机器人上的应用
一、引言 随着可再生能源的迅速发展,光伏发电系统的清洁与维护变得越来越重要。光伏清扫机器人通过自动化技术提高了清洁效率,而蓝牙模组的集成为这些设备提供了更为智能的管理和控制方案。 二、蓝牙模组的功能与实现: 蓝牙模组ANS-BT103M…...
防火墙有什么作用
防火墙的作用:1. 提供网络安全防护;2. 实施访问控制和流量过滤;3. 检测和阻止恶意攻击;4. 保护内部网络免受未经授权的访问;5. 监控网络流量和安全事件;6. 支持虚拟专用网络(VPN)。防…...
MongoDB-BSON 协议与类型
前言: MongoDB 是一个高性能、无模式的 NoSQL 数据库,广泛应用于大数据处理和实时数据存储。作为一个数据库系统,MongoDB 的核心之一就是其使用的 BSON(Binary JSON)格式,它用于存储数据以及在客户端和数据…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...
51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...
UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...
【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...
Cinnamon修改面板小工具图标
Cinnamon开始菜单-CSDN博客 设置模块都是做好的,比GNOME简单得多! 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
