调用大模型api 批量处理图像 保存到excel
最近需要调用大模型,并将结果保存到excel中,效果如下:
代码:
import base64
from zhipuai import ZhipuAI
import os
import pandas as pd
from openpyxl import Workbook
from openpyxl.drawing.image import Image
from io import BytesIO# 指定图像所在的文件夹路径
img_folder = r"aaa" # 请根据实际路径修改# 获取文件夹中的所有图片文件(这里假设所有文件都是图片,可以根据需要调整文件类型)
img_paths = [os.path.join(img_folder, f) for f in os.listdir(img_folder) if f.lower().endswith(('.jpg', '.jpeg', '.png', '.bmp', '.gif'))]# 初始化API客户端
client = ZhipuAI(api_key="xxx") # 填写您自己的APIKey# 创建Excel工作簿
wb = Workbook()
ws = wb.active
ws.title = "Image Recognition Results"# 设置表头
ws.append(["Image", "Image Name", "Model Output"])# 循环处理每张图片
for img_path in img_paths:# 打开每一张图片并转换为base64with open(img_path, 'rb') as img_file:img_base = base64.b64encode(img_file.read()).decode('utf-8')# 调用API进行模型推理response = client.chat.completions.create(model="glm-4v-plus", # 填写需要调用的模型名称messages=[{"role": "user","content": [{"type": "image_url","image_url": {"url": img_base}},{"type": "text","text": "图片中有人吗?"}]}])# 获取模型返回的结果model_output = response.choices[0].messageprint()# 将图片插入到Excel中img = Image(img_path)img.width = 100 # 设置图片的宽度,可以调整img.height = 100 # 设置图片的高度,可以调整# 在Excel表格中插入图片row = len(ws['A']) + 1 # 获取当前行数,用于将图片插入到正确位置ws.add_image(img, f"A{row}")# 将图片的文件名和识别结果添加到表格ws.append([None, os.path.basename(img_path), model_output.content]) # 图片在A列,文件名和结果在其他列# 保存Excel文件
excel_path = r"aaa" # 请根据需要修改保存路径
wb.save(excel_path)print(f"结果已成功保存到 Excel 文件:{excel_path}")
相关文章:

调用大模型api 批量处理图像 保存到excel
最近需要调用大模型,并将结果保存到excel中,效果如下: 代码: import base64 from zhipuai import ZhipuAI import os import pandas as pd from openpyxl import Workbook from openpyxl.drawing.image import Image from io i…...

使用 Flownex 模拟热环境对原油运输的影响
石油和天然气行业经常使用管道仿真来模拟原油的流动。为了准确估计管道容量,必须考虑环境对管道的热影响以及环境温度如何影响油品特性。本博客介绍了如何通过将传热元件集成到管道流网中,以及使用新的工作液材料 Flownex 来模拟各种传热机制。 使用 Fl…...
【WRF-Urban】WPS中有关Urban的变量设置
【WRF-Urban】WPS中有关Urban的变量设置 地理数据源的配置WRF-Urban所需静态地理数据1、LANDUSE:包含城市地表分类的土地利用数据。2、URB_PARAM:城市参数数据集。3、FRC_URB2D:城市覆盖度数据集WRF默认设置(美国)数据集1-National urban dataset in China NUDC(中国)数…...

Socket编程-tcp
1. 前言 在tcp套接字编程这里,我们将完成两份代码,一份是基于tcp实现普通的对话,另一份加上业务,client输入要执行的命令,server将执行结果返回给client 2. tcp_echo_server 与udp类似,前两步࿱…...

Redis 之持久化
目录 介绍 RDB RDB生成方式 自动触发 手动触发 AOF(append-only file) Redis 4.0 混合持久化 Redis主从工作原理 总结 介绍 Redis提供了两个持久化数据的能力,RDB Snapshot 和 AOF(Append Only FIle)…...

视频监控汇聚平台:Liveweb安防监控平台实现接入监控视频集中管理方案
随着各行业数字化转型的不断推进,视频监控技术在行业内的安防应用及管理支撑日益增多。然而,由于前期规划不清晰、管理不到位等问题,视频监管系统普遍存在以下问题: 1. 各部门单位在视频平台建设中以所属领域为单位,导…...

ABAP - 系统集成之SAP的数据同步到OA(泛微E9)服务器数据库
需求背景 项目经理说每次OA下单都需要调用一次SAP的接口获取数据,导致效率太慢了,能否把SAP的数据保存到OA的数据库表里,这样OA可以直接从数据库表里获取数据效率快很多。思来想去,提供了两个方案。 在集群SAP节点下增加一个SQL S…...
uniapp使用ucharts修改Y、X轴标题超出换行
找到ucharts里面的u-charts.js。 Y轴的话找到drawYAxis方法。然后找到方法里面绘制文字的context.fillText方法。先把这个代码注释掉,然后加上下面代码 let labelLines item.split(\n); let currentY pos yAxisFontSize / 2 - 3 * opts.pix; labelLines.forEac…...

三分钟详细解读什么是Ecovadis认证?
Ecovadis认证,这一源自法国的全球性企业可持续性评估体系,宛如一面明镜,映照出企业在环境、社会和治理(ESG)领域的真实面貌。它不仅仅是一项简单的认证,更是一个推动全球企业和供应链向更加绿色、公正、透明…...
spring6:4、原理-手写IoC
目录 4、原理-手写IoC4.1、回顾Java反射4.2、实现Spring的IoC 4、原理-手写IoC 我们都知道,Spring框架的IOC是基于Java反射机制实现的,下面我们先回顾一下java反射。 4.1、回顾Java反射 Java反射机制是在运行状态中,对于任意一个类&#x…...
爬取的数据能实时更新吗?
在当今数字化时代,实时数据更新对于企业和个人都至关重要。无论是市场分析、商品类目监控还是其他需要实时数据的应用场景,爬虫技术都能提供有效的解决方案。本文将探讨如何利用PHP爬虫实现数据的实时更新,并提供相应的代码示例。 1. 实时数…...
Linux 下使用飞鸽传书实现与Windows飞秋的通信
最近把单位的办公电脑换成Linux系统,但是其他同事们都使用飞秋2013进行局域网通信和文件传输,经过一番尝试,发现飞鸽传书For Linux 2014能够实现两者的互相通信。 飞鸽传书ForLINUXLinux版下载_飞鸽传书ForLINUX免费下载_飞鸽传书ForLINUX1.2…...

MongoDB分片集群搭建及扩容
分片集群搭建及扩容 整体架构 环境准备 3台Linux虚拟机,准备MongoDB环境,配置环境变量。一定要版本一致(重点),当前使用 version4.4.9 配置域名解析 在3台虚拟机上执行以下命令,注意替换实际 IP 地址 e…...

qt QSettings详解
1、概述 QSettings是Qt框架中用于应用程序配置和持久化数据的一个类。它提供了一种便捷的方式来存储和读取应用程序的设置,如窗口大小、位置、用户偏好等。QSettings支持多种存储格式,包括INI文件、Windows注册表(仅限Windows平台࿰…...

【Linux】ubuntu下一键配置vim
🔥个人主页🔥:孤寂大仙V 🌈收录专栏🌈:Linux 🌹往期回顾🌹:Linux权限(超详细彻底搞懂Linux的权限) 🔖流水不争,争的是滔滔…...

【NLP 9、实践 ① 五维随机向量交叉熵多分类】
目录 五维向量交叉熵多分类 规律: 实现: 1.设计模型 2.生成数据集 3.模型测试 4.模型训练 5.对训练的模型进行验证 调用模型 你的平静,是你最强的力量 —— 24.12.6 五维向量交叉熵多分类 规律: x是一个五维(索引)向量ÿ…...

信息系统安全防护攻防对抗式实验教学解决方案
一、引言 在网络和信息技术迅猛发展的今天,信息系统已成为社会各领域的关键基础设施,它支撑着电子政务、电子商务、科学研究、能源、交通和社会保障等多个方面。然而,信息系统也面临着日益严峻的网络安全威胁,网络攻击手段层出不…...

【笔记2-4】ESP32:freertos任务创建
主要参考b站宸芯IOT老师的视频,记录自己的笔记,老师讲的主要是linux环境,但配置过程实在太多问题,就直接用windows环境了,老师也有讲一些windows的操作,只要代码会写,操作都还好,开发…...

2024年12月6日Github流行趋势
项目名称:lobe-chat 项目维护者:arvinxx, semantic-release-bot, canisminor1990, lobehubbot, renovate项目介绍:一个开源的现代化设计的人工智能聊天框架。支持多AI供应商(OpenAI / Claude 3 / Gemini / Ollama / Qwen / DeepSe…...

matlab读取NetCDF文件
matlab对NetCDF文件进行信息获取和读取数据 文章目录 前言一、什么是NetCDF文件二、读取NetCDF文件数据 1.引入库 2.读入数据总结 前言 在气象学中,许多气象数据存储在NetCDF文件中,后缀为.nc,通常可以用NCL、python和MATLAB等对该…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...

华为云AI开发平台ModelArts
华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

华为OD机试-食堂供餐-二分法
import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...

2025季度云服务器排行榜
在全球云服务器市场,各厂商的排名和地位并非一成不变,而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势,对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析: 一、全球“三巨头”…...

DingDing机器人群消息推送
文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人,点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置,详见说明文档 成功后,记录Webhook 2 API文档说明 点击设置说明 查看自…...
4. TypeScript 类型推断与类型组合
一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式,自动确定它们的类型。 这一特性减少了显式类型注解的需要,在保持类型安全的同时简化了代码。通过分析上下文和初始值,TypeSc…...
HTML前端开发:JavaScript 获取元素方法详解
作为前端开发者,高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法,分为两大系列: 一、getElementBy... 系列 传统方法,直接通过 DOM 接口访问,返回动态集合(元素变化会实时更新)。…...

【堆垛策略】设计方法
堆垛策略的设计是积木堆叠系统的核心,直接影响堆叠的稳定性、效率和容错能力。以下是分层次的堆垛策略设计方法,涵盖基础规则、优化算法和容错机制: 1. 基础堆垛规则 (1) 物理稳定性优先 重心原则: 大尺寸/重量积木在下…...