人工智能机器学习无监督学习概念及应用详解
无监督学习:深入解析
引言
在人工智能和机器学习的领域中,无监督学习(Unsupervised Learning)是一种重要的学习范式。与监督学习不同,无监督学习不依赖于标签数据,而是通过模型从无标签的数据中学习数据的内在结构。这种学习方式广泛应用于数据探索、降维、聚类等任务中。
无监督学习的定义
无监督学习是一种机器学习技术,它不使用预先标注的训练数据。其目标是通过从输入数据中发现模式或结构来进行数据的组织和解释。这种学习方式特别适用于那些没有明确输出目标的数据集。
关键概念
- 数据建模:无监督学习通过分析数据集来识别模式和关系。
- 模式识别:识别数据中的隐藏模式和结构。
- 数据分布:无监督学习常用于理解数据的分布和变异性。
无监督学习方法
聚类(Clustering)
聚类是无监督学习中最常见的方法之一。它的目标是将数据集划分为多个组,使得同一组中的数据点更加相似,而不同组之间的数据点差异较大。
- K均值聚类(K-Means Clustering):
- 原理:将数据集划分为 K 个簇,每个簇通过其成员数据点的平均值(均值)来定义。
- 算法步骤:
- 随机选择 K 个初始聚类中心。
- 分配每个数据点到最近的聚类中心。
- 重新计算每个聚类的中心。
- 重复步骤 2 和 3,直到聚类中心不再发生变化。
from sklearn.cluster import KMeans
import numpy as np# 创建数据集
X = np.array([[1, 2], [1, 4], [1, 0],[4, 2], [4, 4], [4, 0]])# 初始化KMeans
kmeans = KMeans(n_clusters=2, random_state=0)# 训练模型
kmeans.fit(X)# 输出聚类中心
print(kmeans.cluster_centers_)# 输出每个点的簇标签
print(kmeans.labels_)
- 应用场景:市场细分、图像压缩、文档聚类、社交网络分析。
降维(Dimensionality Reduction)
降维技术用于减少数据集的变量数量,同时尽可能保留数据集的重要特征。这对于高维数据的可视化和处理非常有用。
- 主成分分析(Principal Component Analysis, PCA):
- 原理:通过正交变换将数据从高维空间投影到低维空间,选取投影后方差最大的方向作为新的基向量。
- 算法步骤:
- 标准化数据集。
- 计算协方差矩阵。
- 计算协方差矩阵的特征值和特征向量。
- 选择前 K 个特征向量。
- 转换数据到新的 K 维空间。
from sklearn.decomposition import PCA
import numpy as np# 创建数据集
X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])# 初始化PCA
pca = PCA(n_components=1)# 训练PCA模型
X_transformed = pca.fit_transform(X)# 输出转换后的数据
print(X_transformed)
- 应用场景:图像处理、特征提取、数据压缩。
无监督学习的挑战
- 无标签数据:由于缺乏标签,评估模型的性能可能较为困难。
- 结果不确定性:有时可能找不到明确的结构或模式。
- 高计算复杂度:对于大规模数据集,算法的计算复杂度可能成为瓶颈。
结论
无监督学习在理解数据内在结构方面扮演着重要角色。通过聚类和降维等技术,它为我们提供了从无标签数据中提取信息的强大工具。然而,无监督学习的成功很大程度上依赖于对数据集的深入理解和合适的算法选择。在不断变化的数据环境中,无监督学习将继续为人工智能和数据科学领域提供新的洞察和解决方案。
相关文章:

人工智能机器学习无监督学习概念及应用详解
无监督学习:深入解析 引言 在人工智能和机器学习的领域中,无监督学习(Unsupervised Learning)是一种重要的学习范式。与监督学习不同,无监督学习不依赖于标签数据,而是通过模型从无标签的数据中学习数据的…...

APM装机教程(五):测绘无人船
文章目录 前言一、元生惯导RTK使用二、元厚HXF260测深仪使用三、云卓H2pro遥控器四、海康威视摄像头 前言 船体:超维USV-M1000 飞控:pix6c mini 测深仪:元厚HXF160 RTK:元生惯导RTK 遥控器:云卓H12pro 摄像头…...

微信小程序 运行出错 弹出提示框(获取token失败,请重试 或者 请求失败)
原因是:需要登陆微信公众平台在开发管理 中设置 相应的 服务器域名 中的 request合法域名 // index.jsPage({data: {products:[],cardLayout: grid, // 默认卡片布局为网格模式isGrid: true, // 默认为网格布局page: 0, // 当前页码size: 10, // 每页大小hasMore…...

IDEA的service窗口中启动类是灰色且容易消失
大家在学习Spring Cloud的过程中,随着项目的深入,会分出很多个微服务,当我们的服务数量大于等于三个的时候,IDEA会给我们的服务整理起来,类似于这样 但是当我们的微服务数量达到5个以上的时候,再启动服务的时候,服务的启动类就会变成灰色,而且还容易丢失 解决方法 我们按住…...

R中利用ggplot2绘制气泡图
闲来无事,整理了一下自己的绘图笔记,顺便分享到CSDN上。 一、介绍 气泡图(Bubble Plot)是一种常用的数据可视化方法,用于展示三个变量之间的关系。气泡图的特点是通过气泡的大小、颜色和位置来表达数据中的多维信息。…...

CID引流电商
ClickID技术是基于多家媒体平台开发的电商引流服务,通过媒体提供的宏参数,间接解决电商平台订单数据的回传问题,帮助账户收集到极致精准的数据模型,搭建不同媒体往各平台引流的桥梁。简单来说就是通过ClickID数据监测到另外一个平…...

在google cloud虚拟机上配置anaconda虚拟环境简单教程
下载anaconda安装包 wget https://repo.anaconda.com/archive/Anaconda3-2022.10-Linux-x86_64.sh 安装 bash Anaconda3-2022.10-Linux-x86_64.sh 进入base环境 eval "$(/home/xmxhuihui/anaconda3/bin/conda shell.bash hook)" source ~/.bashrc 安装虚拟环境…...

windows下用vs搭配clang一起生成抽象语法树
如果你使用的是 Visual Studio 环境,并且想要通知 Clang 关于 C 语言标准库的位置,你可以通过以下几种方法来实现。Visual Studio 提供了完整的 C/C 标准库,Clang 可以与之协同工作。以下是具体步骤: 1. 使用 clang-cl Visual S…...

输入法:点三下输入一个汉字
作者常用的双拼输入法,需要26键。虽然也有9键的方案,但重码率较高。计算一下,9键点2下,共81种排列组合。而汉字的读音,不计声调,有400多个。相差甚多。 所以,设计了“三拼输入法”,…...

URL访问网址的全过程
前言 当我们通过一个网址连接输入到浏览器中,此时会有哪些步骤呢? 过程 大致有这几个流程 1:DNS解析,得到IP地址 2:浏览器根据IP地址,访问服务器,建立TCP连接 3:建立完TCP连接后&…...

Thonny IDE + MicroPython + ESP32 + GY-302 测量环境中的光照强度
GY-302是一款基于BH1750FVI光照强度传感器芯片的模块。该模块能够直接测量出环境中的光照强度,并将光照强度转换为数字信号输出。其具体参数如下表所示。 参数名称 参数特性 测量范围 0-65535 LX 测量精度 在环境光下误差小于20%,能够自动忽略50/60…...

小程序-基于java+SpringBoot+Vue的智慧校园管理系统设计与实现
项目运行 1.运行环境:最好是java jdk 1.8,我们在这个平台上运行的。其他版本理论上也可以。 2.IDE环境:IDEA,Eclipse,Myeclipse都可以。推荐IDEA; 3.tomcat环境:Tomcat 7.x,8.x,9.x版本均可 4.硬件环境:…...

基于Java+Swing+Mysql的网络聊天室
博主介绍: 大家好,本人精通Java、Python、C#、C、C编程语言,同时也熟练掌握微信小程序、Php和Android等技术,能够为大家提供全方位的技术支持和交流。 我有丰富的成品Java、Python、C#毕设项目经验,能够为学生提供各类…...

javascript 的map()和join()
map()和join() 1. map()方法 定义 map()是JavaScript数组的一个高阶函数。它创建一个新数组,这个新数组中的元素是原始数组中的元素经过某种函数处理后的结果。 语法 array.map(callback(element[, index[, array]])[, thisArg])其中callback是一个函数࿰…...

深入理解 PyTorch 自动微分机制与自定义 torch.autograd.Function
文章目录 前言一、pytorch使用现有的自动微分机制二、torch.autograd.Function中的ctx解读1、forward 方法中的 ctx2、backward 方法中的 ctx3、小结 三、pytorch自定义自动微分函数(torch.autograd.Function)1、torch.autograd.Function计算前向与后向传…...

《C++ 赋能 K-Means 聚类算法:开启智能数据分类之旅》
在当今数字化浪潮汹涌澎湃的时代,人工智能无疑是引领科技变革的核心驱动力之一。而在人工智能的广袤天地中,数据分类与聚类作为挖掘数据内在价值、揭示数据潜在规律的关键技术手段,正发挥着前所未有的重要作用。K-Means 聚类算法,…...

对 JavaScript 说“不”
JavaScript编程语言历史悠久,但它是在 1995 年大约一周内创建的。 它最初被称为 LiveScript,但后来更名为 JavaScript,以赶上 Java 的潮流,尽管它与 Java 毫无关系。 它很快就变得非常流行,推动了 Web 应用程序革命&…...

spring下的beanutils.copyProperties实现深拷贝
spring下的beanutils.copyProperties方法是深拷贝还是浅拷贝?可以实现深拷贝吗? 答案:浅拷贝。 一、浅拷贝深拷贝的理解 简单说拷贝就是将一个类中的属性拷贝到另一个中,对于BeanUtils.copyProperties来说,你必须保…...

蓝桥杯二分题
P1083 [NOIP2012 提高组] 借教室 题目描述 在大学期间,经常需要租借教室。大到院系举办活动,小到学习小组自习讨论,都需要向学校申请借教室。教室的大小功能不同,借教室人的身份不同,借教室的手续也不一样。 面对海量租…...

3D数字化革新,探索博物馆的正确打开新方式!
3D数字化的发展,让博物馆也焕发新机,比如江苏省的“云上博物”,汇聚江苏全省博物馆展陈资源,采取线上展示和线下体验两种方式进行呈现的数字展览项目。在线上,用户可以通过H5或小程序进入“云上博物”数字展览空间&…...

工业检测基础-工业相机选型及应用场景
以下是一些常见的工业检测相机种类、检测原理、应用场景及选型依据: 2D相机 检测原理:基于二维图像捕获,通过分析图像的明暗、纹理、颜色等信息来检测物体的特征和缺陷.应用场景:广泛应用于平面工件的外观检测,如检测…...

通过 FRP 实现 P2P 通信:控制端与被控制端配置指南
本文介绍了如何通过 FRP 实现 P2P 通信。FRP(Fast Reverse Proxy)是一款高效的内网穿透工具,能够帮助用户突破 NAT 和防火墙的限制,将内网服务暴露到公网。通过 P2P 通信方式,FRP 提供了更加高效、低延迟的网络传输方式…...

即时通信系统项目总览
聊天室服务端项目总体介绍 本项目是一个全栈的即时通信系统, 前端使用QT实现聊天客户端, 后端采⽤微服务框架设计, 由网关子服务统一接收客户端的请求, 再分发到不同的子服务上处理并将结果返回给网关, 网关再将响应转发给客户端 拆分的微服务包含: 网关服务器&…...

QT获取tableview选中的行和列的值
查询数据库数据放入tableview(tableView_database)后 QSqlQueryModel* sql_model new QSqlQueryModel(this);sql_model->setQuery("select * from dxxxb_move_lot_tab");sql_model->setHeaderData(0, Qt::Horizontal, tr("id&quo…...

GDPU 人工智能 期末复习
1、python基础 2、回归、KNN、K-Means、搜索方法思想及算法实现步骤 3、知识表示基本概念 4、状态空间的相关概念、表示方法及应用 5、图搜索策略及应用 6、问题归约概念、与或图搜索、博弈树搜索与剪枝 7、决策树、贝叶斯决策算法及其应用 8、神经网络与深度学习基本概念 一、…...

编程之路,从0开始:补充篇
Hello大家好!很高兴和大家又见面啦!给生活添点passion,开始今天的编程之路! 我的博客:<但凡. 我的专栏:《编程之路》、《题海拾贝》、《数据结构与算法之美》 欢迎点赞,关注! 这篇…...

使用缓存提升Web应用性能:从新手到高手的实践指南
引言 在现代Web开发中,性能优化是确保用户体验和系统稳定性的关键。使用缓存是提升网站性能的有效手段之一,可以显著减少数据库访问和计算开销。根据“网站优化第一定律”,缓存可以提升网站的响应速度,减少延迟,从而改…...

【数字电路与逻辑设计】实验一 序列检测器
文章总览:YuanDaiMa2048博客文章总览 【数字电路与逻辑设计】实验一 序列检测器 一、实验内容二、设计过程(一)作出状态图或状态表(二)状态化简(三)状态编码 三、源代码(一ÿ…...

运动模糊效果
1、运动模糊效果 运动模糊效果,是一种用于 模拟真实世界中快速移动物体产生的模糊现象 的图像处理技术,当一个物体以较高速度移动时,由于人眼或摄像机的曝光时间过长,该物体会在图像中留下模糊的运动轨迹。这种效果游戏、动画、电…...

养老护理员培训考试题库;免费题库;大风车题库
下载链接:大风车题库-文件 大风车题库网站:大风车题库 大风车excel(试题转excel):大风车excel...