SpringBoot 整合 Avro 与 Kafka 详解
SpringBoot 整合 Avro 与 Kafka 详解
在大数据处理和实时数据流场景中,Apache Kafka 和 Apache Avro 是两个非常重要的工具。Kafka 作为一个分布式流处理平台,能够高效地处理大量数据,而 Avro 则是一个用于序列化数据的紧凑、快速的二进制数据格式。将这两者结合,并通过 Spring Boot 进行整合,可以构建出高效、可扩展的实时数据处理系统。
一、环境准备
在开始整合之前,需要准备好以下环境:
- Java:确保已经安装了 JDK,推荐使用 JDK 8 或更高版本。
- Maven:用于管理项目的依赖和构建过程。
- Spring Boot:作为项目的框架,推荐使用较新的版本,如 Spring Boot 2.x。
- Kafka:确保 Kafka 已经安装并运行,可以使用 Docker 部署 Kafka 集群。
- Avro:Avro 依赖 JSON 定义的架构来序列化数据。
二、项目结构
一个典型的 Spring Boot 项目结构可能如下:
spring-boot-kafka-avro
├── src
│ ├── main
│ │ ├── java
│ │ │ └── com
│ │ │ └── example
│ │ │ ├── SpringBootKafkaAvroApplication.java
│ │ │ ├── config
│ │ │ │ └── KafkaConfig.java
│ │ │ ├── producer
│ │ │ │ └── KafkaProducer.java
│ │ │ ├── consumer
│ │ │ │ └── KafkaConsumer.java
│ │ │ └── model
│ │ │ └── ElectronicsPackage.java (由 Avro 自动生成)
│ │ ├── resources
│ │ │ ├── application.properties
│ │ │ └── avro
│ │ │ └── electronicsPackage.avsc (Avro 架构文件)
│ └── test
│ └── java
│ └── com
│ └── example
│ └── SpringBootKafkaAvroApplicationTests.java
└── pom.xml
三、添加依赖
在 pom.xml
文件中添加必要的依赖:
<dependencies><!-- Spring Boot Starter --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter</artifactId></dependency><!-- Spring Kafka --><dependency><groupId>org.springframework.kafka</groupId><artifactId>spring-kafka</artifactId><version>2.9.13</version> <!-- 根据需要选择合适的版本 --></dependency><!-- Avro --><dependency><groupId>org.apache.avro</groupId><artifactId>avro</artifactId><version>1.11.0</version> <!-- 根据需要选择合适的版本 --></dependency><!-- Avro Maven Plugin --><plugin><groupId>org.apache.avro</groupId><artifactId>avro-maven-plugin</artifactId><version>${avro.version}</version><executions><execution><phase>generate-sources</phase><goals><goal>schema</goal></goals><configuration><sourceDirectory>${project.basedir}/src/main/resources/avro/</sourceDirectory><outputDirectory>${project.build.directory}/generated/avro</outputDirectory></configuration></execution></executions></plugin>
</dependencies>
四、定义 Avro 架构
在 src/main/resources/avro/
目录下创建一个 Avro 架构文件 electronicsPackage.avsc
:
{"namespace": "com.example.model","type": "record","name": "ElectronicsPackage","fields": [{"name": "package_number", "type": ["string", "null"], "default": null},{"name": "frs_site_code", "type": ["string", "null"], "default": null},{"name": "frs_site_code_type", "type": ["string", "null"], "default": null}]
}
这个架构文件定义了 ElectronicsPackage
类,包括三个字段:package_number
、frs_site_code
和 frs_site_code_type
。
五、生成 Avro 类
运行 Maven 构建过程,Avro Maven 插件会根据 electronicsPackage.avsc
文件生成相应的 Java 类 ElectronicsPackage.java
。
六、配置 Kafka
在 application.properties
文件中配置 Kafka 的相关属性:
spring.kafka.bootstrap-servers=localhost:9092
spring.kafka.consumer.group-id=my-group
spring.kafka.consumer.auto-offset-reset=earliest
spring.kafka.producer.key-serializer=org.apache.kafka.common.serialization.StringSerializer
spring.kafka.producer.value-serializer=com.example.config.AvroSerializer
spring.kafka.consumer.key-deserializer=org.apache.kafka.common.serialization.StringDeserializer
spring.kafka.consumer.value-deserializer=com.example.config.AvroDeserializer
注意,这里指定了自定义的 AvroSerializer
和 AvroDeserializer
类。
七、实现 Avro 序列化器和反序列化器
创建 AvroSerializer
和 AvroDeserializer
类,用于 Avro 数据的序列化和反序列化。
// AvroSerializer.java
package com.example.config;import org.apache.avro.generic.GenericData;
import org.apache.avro.generic.GenericRecord;
import org.apache.avro.io.DatumWriter;
import org.apache.avro.io.Encoder;
import org.apache.avro.io.EncoderFactory;
import org.apache.avro.specific.SpecificDatumWriter;
import org.apache.avro.specific.SpecificRecord;
import org.apache.kafka.common.serialization.Serializer;import java.io.ByteArrayOutputStream;
import java.io.IOException;public class AvroSerializer<T extends SpecificRecord> implements Serializer<T> {private final DatumWriter<T> writer;public AvroSerializer(Class<T> type) {this.writer = new SpecificDatumWriter<>(type);}@Overridepublic byte[] serialize(String topic, T data) {if (data == null) {return null;}ByteArrayOutputStream out = new ByteArrayOutputStream();Encoder encoder = EncoderFactory.get().binaryEncoder(out, null);try {writer.write(data, encoder);encoder.flush();out.close();} catch (IOException e) {throw new RuntimeException(e);}return out.toByteArray();}@Overridepublic void configure(Map<String, ?> configs, boolean isKey) {// No-op}@Overridepublic void close() {// No-op}
}// AvroDeserializer.java
package com.example.config;import org.apache.avro.generic.GenericData;
import org.apache.avro.generic.GenericRecord;
import org.apache.avro.io.DatumReader;
import org.apache.avro.io.Decoder;
import org.apache.avro.io.DecoderFactory;
import org.apache.avro.specific.SpecificDatumReader;
import org.apache.avro.specific.SpecificRecord;
import org.apache.kafka.common.serialization.Deserializer;import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.util.Map;public class AvroDeserializer<T extends SpecificRecord> implements Deserializer<T> {private final Class<T> type;private final DatumReader<T> reader;public AvroDeserializer(Class<T> type) {this.type = type;this.reader = new SpecificDatumReader<>(type);}@Overridepublic T deserialize(String topic, byte[] data) {if (data == null) {return null;}ByteArrayInputStream in = new ByteArrayInputStream(data);Decoder decoder = DecoderFactory.get().binaryDecoder(in, null);try {return reader.read(null, decoder);} catch (IOException e) {throw new RuntimeException(e);}}@Overridepublic void configure(Map<String, ?> configs, boolean isKey) {// No-op
相关文章:
SpringBoot 整合 Avro 与 Kafka 详解
SpringBoot 整合 Avro 与 Kafka 详解 在大数据处理和实时数据流场景中,Apache Kafka 和 Apache Avro 是两个非常重要的工具。Kafka 作为一个分布式流处理平台,能够高效地处理大量数据,而 Avro 则是一个用于序列化数据的紧凑、快速的二进制数…...

若依 ruoyi VUE el-select 直接获取 选择option 的 label和value
1、最新在研究若依这个项目,我使用的是前后端分离的方案,RuoYi-Vue-fast(后端) RuoYi-Vue-->ruoyi-ui(前端)。RuoYi-Vue-fast是单应用版本没有区分那么多的modules 自己开发起来很方便,这个项目运行起来很方便,但是需要自定义的…...

大数据-155 Apache Druid 架构与原理详解 数据存储 索引服务 压缩机制
点一下关注吧!!!非常感谢!!持续更新!!! 目前已经更新到了: Hadoop(已更完)HDFS(已更完)MapReduce(已更完&am…...

修改MySQL存储路径
1.查看原路径 show variables like ‘%datadir%’; 2.停止MYSQL 以管理员身份运行命令提示符 net stop MySQL84 在服务中直接停止MySQL 3.编辑配置文件 可能会遇到无权限修改,可以先修改my.ini的权限。可以通过:右键my.ini → 属性 → 安全→ 编辑 …...

Git常用的命令【提交与回退】
git分布式版本控制系统 (SVN集中式版本控制系统)之间的对比 git有本地仓库和远程仓库,不同的开发人员可以分别提交自己的本地仓库并维护代码的版本控制。 然后多个人员在本地仓库协作的代码,可以提交到远程仓库中做整合。 git本…...

详解:HTTP/HTTPS协议
HTTP协议 一.HTTP是什么 HTTP,全称超文本传输协议,是一种用于分布式、协作式、超媒体信息系统的应用层协议。HTTP往往是基于传输层TCP协议实现的,采用的一问一答的模式,即发一个请求,返回一个响应。 Q:什…...

0.96寸OLED---STM32
一、简介 OLED:有机发光二极管 OLED显示屏:性能优异的新型显示屏,具有功耗低(相比LCD不需要背光源,每一个节点当度发光)、响应速度快、宽视角(自发光,从任何视角看都比较清晰&…...

保姆级教学 uniapp绘制二维码海报并保存至相册,真机正常展示图片二维码
一、获取二维码 uni.request({url: https://api.weixin.qq.com/wxa/getwxacode?access_token${getStorage("token")},responseType: "arraybuffer",method: "POST",data: {path: "/pages/index/index"},success(res) {// 转换为 Uint…...
常用Vim操作
vimrc配置 ctags -R * 生成tags文件 set number set ts4 set sw4 set autoindent set cindent set tag~/tmp/log/help/tags 自动补全: ctrln:自动补全 输入: a:从当前文字后插入i:从当前文字前插入s: 删除当前字…...

【C#】NET 9中LINQ的新特性-CountBy
前言 在 .NET 中,使用 LINQ 对元素进行分组并计算它们的出现次数时,需要通过两个步步骤。首先,使用 GroupBy方法根据特定键对元素进行分类。然后,再计算每个组元素包含个数。而随着 .NET 9 版本发布,引入了一些新特性。其中 LINQ 引入了一种新的方法 CountBy,本文一起来了…...

Trimble X9三维激光扫描仪高效应对化工厂复杂管道扫描测绘挑战【沪敖3D】
化工安全关系到国计民生,近年来随着化工厂数字化改革不断推进,数字工厂逐步成为工厂安全管理的重要手段。而化工管道作为工厂设施的重要组成部分,由于其数量多、种类繁杂,一直是企业管理的重点和难点。 传统的化工管廊往往缺乏详…...

【数据结构】文件和外部排序
外部排序 外存信息的存取 计算基本存储方式 内部存储(主存):断电后数据会丢失,访问速度快,成本高容量通常较小外部存储(辅存):断电后数据不会丢失,访问速度较慢&#x…...
新手学习:网页前端、后端、服务器Tomcat和数据库的基本介绍
首先一点,不管是那个框架开发的网页前端,最后都需要Build,构建完毕以后都是原始的HTML CSS JS 三样文件! 网页前端 目录结构 在开始开发网站之前,首先需要了解如何组织文件。一个简单的网页项目通常会有以下几个文件夹和文件&…...

机器学习贝叶斯模型原理
一、引言 在机器学习与数据分析的广袤天地中,贝叶斯模型犹如一颗璀璨的明星,闪耀着独特的光芒,为众多领域的分类、预测等任务提供了强大的理论支撑与实用解法。然而,对于许多初涉此领域的小伙伴而言,贝叶斯模型背后的…...

【C++】实现100以内素数的求解
博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 💯前言💯代码概览💯代码结构与逻辑分析1. 包含的头文件和命名空间2. 素数判断函数 isPrime功能输入与输出核心逻辑数学背景 3. 主函数 main功能核心逻辑输出示例 &#…...
Python 浏览器自动化新利器:DrissionPage,让网页操作更简单!
Python 浏览器自动化新利器:DrissionPage,让网页操作更简单! 文章目录 Python 浏览器自动化新利器:DrissionPage,让网页操作更简单!🚀 引言🌟 DrissionPage简介🛠️ 三大…...
Rust学习笔记_13——枚举
Rust学习笔记_10——守卫 Rust学习笔记_11——函数 Rust学习笔记_12——闭包 枚举 文章目录 枚举1. 定义1.1 无值变体1.2 有值变体1.3 枚举与泛型的结合 2. 使用2.1 和匹配模式一起使用2.2 枚举作为类型别名 3. 常用枚举类型 在Rust编程语言中,枚举(enum…...

Postgresql 格式转换笔记整理
1、数据类型有哪些 1.1 数值类型 DECIMAL/NUMERIC 使用方法 DECIMAL是PostgreSQL中的一种数值数据类型,用于存储固定精度和小数位数的数值。DECIMAL的精度是由用户指定的,可以存储任何位数的数值,而小数位数则由用户自行定义。DECIMAL类型的…...

AI开发:卷积神经网络CNN原理初识,简易例程 - 机器学习
一 、卷积神经网络是什么 (1)印象 今天说的CNN,并不是我们熟知的美国有线电视新闻网。 那什么是CNN呢? Convolutional Neural Networks, CNN)简单来说,就是用一个筛子来筛面粉的。 筛子就是卷积核&…...
详细介绍vue的递归组件(重要)
递归组件在 Vue 中是一个非常强大的概念,尤其在渲染层级结构(如树形结构、嵌套列表、评论系统等)时,能够极大地简化代码。 什么是递归组件? 递归组件就是一个组件在其模板中引用自身。这种做法通常用于渲染树形结构或…...

XCTF-web-easyupload
试了试php,php7,pht,phtml等,都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接,得到flag...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...

现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...

Mac下Android Studio扫描根目录卡死问题记录
环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中,提示一个依赖外部头文件的cpp源文件需要同步,点…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...

vulnyx Blogger writeup
信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面,gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress,说明目标所使用的cms是wordpress,访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...