当前位置: 首页 > news >正文

bilstm -crf 的torch官方的教程 不支持 batchsize 。。。。有更效率更高的方案吗

根据您的需求,您正在寻找一个支持批量处理(batch size)的BiLSTM-CRF模型的PyTorch教程。以下是一些资源,它们提供了更高效的解决方案,包括批量处理的支持:

1. **a-PyTorch-Tutorial-to-Sequence-Labeling**:这个GitHub仓库提供了一个关于序列标注的PyTorch教程,其中包括了BiLSTM-CRF模型的实现。教程中详细解释了如何准备数据、构建模型以及训练模型,支持批量处理。[GitHub - sgrvinod/a-PyTorch-Tutorial-to-Sequence-Labeling](https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Sequence-Labeling)

GitHub - sgrvinod/a-PyTorch-Tutorial-to-Sequence-Labeling: Empower Sequence Labeling with Task-Aware Neural Language Model | a PyTorch Tutorial to Sequence Labeling

2. **cn-PyTorch-Sequence-Labeling-Tutorial-with-LM-LSTM-CRF**:这个资源是上述教程的中文翻译版本,同样提供了关于如何使用BiLSTM-CRF进行序列标注的详细指导,包括批量处理的支持。[GitHub - ofooo/cn-PyTorch-Sequence-Labeling-Tutorial-with-LM-LSTM-CRF](https://github.com/ofooo/cn-PyTorch-Sequence-Labeling-Tutorial-with-LM-LSTM-CRF)

https://github.com/ofooo/cn-PyTorch-Sequence-Labeling-Tutorial-with-LM-LSTM-CRF

3. **NLP with PyTorch: A Comprehensive Guide**:这个DataCamp教程提供了一个全面的指南,介绍了如何使用PyTorch进行自然语言处理,包括数据准备、模型定义、训练和预测。教程中提到了如何使用`DataLoader`来创建数据集,这对于批量处理是非常有用的。[DataCamp - NLP with PyTorch: A Comprehensive Guide](https://www.datacamp.com/tutorial/nlp-with-pytorch-a-comprehensive-guide) 

https://www.datacamp.com/tutorial/nlp-with-pytorch-a-comprehensive-guide

改成批处理关键代码  previous_score = score[t - 1].view(batch_size, -1, 1)

def viterbi_decode(self, h: FloatTensor, mask: BoolTensor) -> List[List[int]]:"""decode labels using viterbi algorithm:param h: hidden matrix (batch_size, seq_len, num_labels):param mask: mask tensor of each sequencein mini batch (batch_size, batch_size):return: labels of each sequence in mini batch"""batch_size, seq_len, _ = h.size()# prepare the sequence lengths in each sequenceseq_lens = mask.sum(dim=1)# In mini batch, prepare the score# from the start sequence to the first labelscore = [self.start_trans.data + h[:, 0]]path = []for t in range(1, seq_len):# extract the score of previous sequence# (batch_size, num_labels, 1)previous_score = score[t - 1].view(batch_size, -1, 1)# extract the score of hidden matrix of sequence# (batch_size, 1, num_labels)h_t = h[:, t].view(batch_size, 1, -1)# extract the score in transition# from label of t-1 sequence to label of sequence of t# self.trans_matrix has the score of the transition# from sequence A to sequence B# (batch_size, num_labels, num_labels)score_t = previous_score + self.trans_matrix + h_t# keep the maximum value# and point where maximum value of each sequence# (batch_size, num_labels)best_score, best_path = score_t.max(1)score.append(best_score)path.append(best_path)

torchcrf 使用 支持批处理,torchcrf的简单使用-CSDN博客文章浏览阅读9.7k次,点赞5次,收藏33次。本文介绍了如何在PyTorch中安装和使用TorchCRF库,重点讲解了CRF模型参数设置、自定义掩码及损失函数的计算。作者探讨了如何将CRF的NLL损失与交叉熵结合,并通过自适应权重优化训练过程。虽然在单任务中效果不显著,但对于多任务学习提供了有价值的方法。https://blog.csdn.net/csdndogo/article/details/125541213

torchcrf的简单使用-CSDN博客

为了防止文章丢失 ,吧内容转发在这里

https://blog.csdn.net/csdndogo/article/details/125541213

. 安装torchcrf,模型使用
安装:pip install TorchCRF
CRF的使用:在官网里有简单的使用说明
注意输入的格式。在其他地方下载的torchcrf有多个版本,有些版本有batch_first参数,有些没有,要看清楚有没有这个参数,默认batch_size是第一维度。
这个代码是我用来熟悉使用crf模型和损失函数用的,模拟多分类任务输入为随机数据和随机标签,所以最后的结果预测不能很好的跟标签对应。

import torch
import torch.nn as nn
import numpy as np
import random
from TorchCRF import CRF
from torch.optim import Adam
seed = 100

def seed_everything(seed=seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True

num_tags = 5
model = CRF(num_tags, batch_first=True)  # 这里根据情况而定
seq_len = 3
batch_size = 50
seed_everything()
trainset = torch.randn(batch_size, seq_len, num_tags)  # features
traintags = (torch.rand([batch_size, seq_len])*4).floor().long()  # (batch_size, seq_len)
testset = torch.randn(5, seq_len, num_tags)  # features
testtags = (torch.rand([5, seq_len])*4).floor().long()  # (batch_size, seq_len)

# 训练阶段
for e in range(50):
    optimizer = Adam(model.parameters(), lr=0.05)
    model.train()
    optimizer.zero_grad()
    loss = -model(trainset, traintags)
    print('epoch{}: loss score is {}'.format(e, loss))
    loss.backward()
    torch.nn.utils.clip_grad_norm_(model.parameters(),5)
    optimizer.step()

#测试阶段
model.eval()
loss = model(testset, testtags)
model.decode(testset)


1.1模型参数,自定义掩码mask注意事项
def forward(self, emissions, labels: LongTensor, mask: BoolTensor) 
1
分别为发射矩阵(各标签的预测值),标签,掩码(注意这里的mask类型为BoolTensor)
注意:此处自定义mask掩码时,使用LongTensor类型的[1,1,1,1,0,0]会报错,需要转换成ByteTensor,下面是一个简单的获取mask的函数,输入为标签数据:

    def get_crfmask(self, labels):
        crfmask = []
        for batch in labels:
            res = [0 if d == -1 else 1 for d in batch]
            crfmask.append(res)
        return torch.ByteTensor(crfmask)


运行运行
2. CRF的损失函数是什么?
损失函数由真实转移路径值和所有可能情况路径转移值两部分组成,损失函数的公式为

分子为真实转移路径值,分母为所有路径总分数,上图公式在crf原始代码中为:

    def forward(
        self, h: FloatTensor, labels: LongTensor, mask: BoolTensor) -> FloatTensor:

        log_numerator = self._compute_numerator_log_likelihood(h, labels, mask)
        log_denominator = self._compute_denominator_log_likelihood(h, mask)

        return log_numerator - log_denominator

CRF损失函数值为负对数似然函数(NLL),所以如果原来的模型损失函数使用的是交叉熵损失函数,两个损失函数相加时要对CRF返回的损失取负。

    loss = -model(trainset, traintags)
1
3. 如何联合CRF的损失函数和自己的网络模型的交叉熵损失函数进行训练?
我想在自己的模型上添加CRF,就需要联合原本的交叉熵损失函数和CRF的损失函数,因为CRF输出的时NLL,所以在模型在我仅对该损失函数取负之后和原先函数相加。

        loss2 = -crf_layer(log_prob, label, mask=crfmask)
        loss1 = loss_function(log_prob.permute(0, 2, 1), label)
        loss = loss1 + loss2
        loss.backward()

缺陷: 效果不佳,可以尝试对loss2添加权重。此处贴一段包含两个损失函数的自适应权重训练的函数。

3.1.自适应损失函数权重
由于CRF返回的损失与原来的损失数值不在一个量级,所以产生了自适应权重调整两个权重的大小来达到优化的目的。自适应权重原本属于多任务学习部分,未深入了解,代码源自某篇复现论文的博客。

class AutomaticWeightedLoss(nn.Module):
    def __init__(self, num=2):
        super(AutomaticWeightedLoss, self).__init__()
        params = torch.ones(num, requires_grad=True)
        self.params = torch.nn.Parameter(params)

    def forward(self, *x):
        loss_sum = 0
        for i, loss in enumerate(x):
            loss_sum += 0.5 / (self.params[i] ** 2) * loss + torch.log(1 + self.params[i] ** 2)
        return loss_sum

相关文章:

bilstm -crf 的torch官方的教程 不支持 batchsize 。。。。有更效率更高的方案吗

根据您的需求,您正在寻找一个支持批量处理(batch size)的BiLSTM-CRF模型的PyTorch教程。以下是一些资源,它们提供了更高效的解决方案,包括批量处理的支持: 1. **a-PyTorch-Tutorial-to-Sequence-Labeling*…...

Python面试常见问题及答案6

一、基础部分 问题1: 在Python中,如何将字符串转换为整数?如果字符串不是合法的数字字符串会怎样? 答案: 在Python中,可以使用int()函数将字符串转换为整数。如果字符串是合法的数字字符串,转换…...

代码随想录算法训练营第三天 | 链表理论基础 | 203.移除链表元素

感觉上是可以轻松完成的,因为对链接的结构,元素的删除过程心里明镜似的 实际上四处跑气 结构体的初始化好像完全忘掉了,用malloc折腾半天,忘记了用new,真想扇自己嘴巴子到飞起删除后写一个函数,把链表打印…...

1. 机器学习基本知识(5)——练习题(1)

1.7 🐦‍🔥练习题(本章重点回顾与总结) 0.回答格式约定: 对于书本内容的回答,将优先寻找书本内容作为答案进行回答。 书本内容回答完毕后,将对问题进行补充回答,上面分割线作为两个…...

vue 自定义组件image 和 input

本章主要是介绍自定义的组件:WInput:这是一个验证码输入框,自动校验,输入完成回调等;WImage:这是一个图片展示组件,集成了缩放,移动等操作。 目录 一、安装 二、引入组件 三、使用…...

系列3:基于Centos-8.6 Kubernetes使用nfs挂载pod的应用日志文件

每日禅语 古代,一位官员被革职遣返,心中苦闷无处排解,便来到一位禅师的法堂。禅师静静地听完了此人的倾诉,将他带入自己的禅房之中。禅师指着桌上的一瓶水,微笑着对官员说:​“你看这瓶水,它已经…...

Jfinal项目整合Redis

1、引入相关依赖 <!-- https://mvnrepository.com/artifact/redis.clients/jedis --> <dependency><groupId>redis.clients</groupId><artifactId>jedis</artifactId><version>2.9.0</version> </dependency><depen…...

在Ubuntu服务器上备份文件到自己的百度网盘

文章目录 概述安装bypy同步文件定时任务脚本 概述 之前自购了一台阿里云服务器&#xff0c;系统镜像为Ubuntu 22.04&#xff0c; 并且搭建了LNMP开发环境&#xff08;可以参考&#xff1a;《Ubuntu搭建PHP开发环境操作步骤(保姆级教程)》&#xff09;。由于项目运行中会产生附…...

Unity 模板测试透视效果(URP)

可以实现笼中窥梦和PicoVR中通过VST局部透视效果。 使用到的Shader: Shader "Unlit/StencilShader" {Properties{[IntRange]_Index("Stencil Index",Range(0,255))0}SubShader{Tags{"RenderType""Opaque""Queue""Geo…...

《计算机视觉证书:开启职业发展新航道》

一、引言 在当今科技飞速发展的时代&#xff0c;计算机视觉技术正以惊人的速度改变着我们的生活和工作方式。从智能手机的人脸识别解锁到自动驾驶汽车的环境感知&#xff0c;计算机视觉技术的应用无处不在。而计算机视觉证书作为这一领域的专业认证&#xff0c;其作用愈发凸显…...

.NET6 WebApi第1讲:VSCode开发.NET项目、区别.NET5框架【两个框架启动流程详解】

一、使用VSCode开发.NET项目 1、创建文件夹&#xff0c;使用VSCode打开 2、安装扩展工具 1>C# 2>安装NuGet包管理工具&#xff0c;外部dll包依靠它来加载 法1》&#xff1a;NuGet Gallery&#xff0c;注意要启动科学的工具 法2》NuGet Package Manager GUl&#xff0c…...

Git-分布式版本控制工具

目录 1. 概述 1. 1集中式版本控制工具 1.2分布式版本控制工具 2.Git 2.1 git 工作流程 1. 概述 在开发活动中&#xff0c;我们经常会遇到以下几个场景&#xff1a;备份、代码回滚、协同开发、追溯问题代码编写人和编写时间&#xff08;追责&#xff09;等。备份的话是为了…...

C++ 第10章 对文件的输入输出

https://www.bilibili.com/video/BV1cx4y1d7Ut/?p147&spm_id_from333.1007.top_right_bar_window_history.content.click&vd_sourcee8984989cddeb3ef7b7e9fd89098dbe8 &#x1f341;&#x1f341;&#x1f341;本篇为贺宏宏老师C语言视频教程文件输入输出部分笔记整理…...

【机器学习】手写数字识别的最优解:CNN+Softmax、Sigmoid与SVM的对比实战

一、基于CNNSoftmax函数进行分类 1数据集准备 2模型设计 3模型训练 4模型评估 5结果分析 二、 基于CNNsigmoid函数进行分类 1数据集准备 2模型设计 3模型训练 4模型评估 5结果分析 三、 基于CNNSVM进行分类 1数据集准备 2模型设计 3模型训练 4模型评估 5结果分…...

android 聊天界面键盘、表情切换丝滑

1、我们在聊天页面时候&#xff0c;往往会遇到&#xff0c;键盘、表情、其他选择切换时候页面会出现掉下来再弹起问题&#xff0c;这是因为&#xff0c;我们切换时候&#xff0c;键盘异步导致内容View高度变化&#xff0c;页面掉下来后&#xff0c;又被其他内容顶起这种很差视觉…...

Web项目图片视频加载缓慢/首屏加载白屏

Web项目图片视频加载缓慢/首屏加载白屏 文章目录 Web项目图片视频加载缓慢/首屏加载白屏一、原因二、 解决方案2.1、 图片和视频的优化2.1.1、压缩图片或视频2.1.2、 选择合适的图片或视频格式2.1.3、 使用图片或视频 CDN 加速2.1.4、Nginx中开启gzip 三、压缩工具推荐 一、原因…...

关于Git分支合并,跨仓库合并方式

关于Git合并代码的方式说明 文章目录 关于Git合并代码的方式说明前情提要开始合并方式一&#xff1a;git merge方式二&#xff1a;git cherry-pick方式三&#xff1a;git checkout Git跨仓库合并的准备事项前提拉取源仓库代码 前情提要 同仓库不同分支代码的合并可直接往下看文…...

[网络] UDP协议16位校验和

16位校验和是udp报头中的一个字段,绝大多数的教材和网课都会忽略这个字段,不去细究,我闲的蛋疼问了问ai,得到了一个答案,故作此文,以证明我爱学习之心惊天地泣鬼神(狗头 ai的回答 仅从作用来说,它会根据整个应用层报文进行运算,生成一个准确的数字,这个数字不能保证唯一性,但根…...

Vue 3 中的 `update:modelValue` 事件详解

在 Vue 3 中&#xff0c;update:modelValue​ 事件通常与 v-model​ 指令一起使用&#xff0c;以实现自定义组件的双向数据绑定。以下是对该事件的详细分析&#xff1a; 事件定义 首先&#xff0c;我们需要在组件中定义 update:modelValue​ 事件。可以使用 defineEmits​ 函…...

vue3+vite+ts 使用webrtc-streamer播放海康rtsp监控视频

了解webrtc-streamer webrtc-streamer 是一个使用简单机制通过 WebRTC 流式传输视频捕获设备和 RTSP 源的项目&#xff0c;它内置了一个小型的 HTTP server 来对 WebRTC需要的相关接口提供支持。相对于ffmpegflv.js的方案&#xff0c;延迟降低到了0.4秒左右&#xff0c;画面的…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来&#xff0c;Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

vue3 定时器-定义全局方法 vue+ts

1.创建ts文件 路径&#xff1a;src/utils/timer.ts 完整代码&#xff1a; import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中&#xff0c;从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备&#xff08;如专用硬件设备&#xff09;&#xff0c;从而消除了直接物理连接的需要。USB over IP的…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架&#xff0c;允许使用简单的变成模型跨计算机对大型集群进行分布式处理&#xff08;1.海量的数据存储 2.海量数据的计算&#xff09;Hadoop核心组件 hdfs&#xff08;分布式文件存储系统&#xff09;&a…...

Java编程之桥接模式

定义 桥接模式&#xff08;Bridge Pattern&#xff09;属于结构型设计模式&#xff0c;它的核心意图是将抽象部分与实现部分分离&#xff0c;使它们可以独立地变化。这种模式通过组合关系来替代继承关系&#xff0c;从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...

Linux系统部署KES

1、安装准备 1.版本说明V008R006C009B0014 V008&#xff1a;是version产品的大版本。 R006&#xff1a;是release产品特性版本。 C009&#xff1a;是通用版 B0014&#xff1a;是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存&#xff1a;1GB 以上 硬盘&#xf…...

协议转换利器,profinet转ethercat网关的两大派系,各有千秋

随着工业以太网的发展&#xff0c;其高效、便捷、协议开放、易于冗余等诸多优点&#xff0c;被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口&#xff0c;具有实时性、开放性&#xff0c;使用TCP/IP和IT标准&#xff0c;符合基于工业以太网的…...