bilstm -crf 的torch官方的教程 不支持 batchsize 。。。。有更效率更高的方案吗
根据您的需求,您正在寻找一个支持批量处理(batch size)的BiLSTM-CRF模型的PyTorch教程。以下是一些资源,它们提供了更高效的解决方案,包括批量处理的支持:
1. **a-PyTorch-Tutorial-to-Sequence-Labeling**:这个GitHub仓库提供了一个关于序列标注的PyTorch教程,其中包括了BiLSTM-CRF模型的实现。教程中详细解释了如何准备数据、构建模型以及训练模型,支持批量处理。[GitHub - sgrvinod/a-PyTorch-Tutorial-to-Sequence-Labeling](https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Sequence-Labeling)
GitHub - sgrvinod/a-PyTorch-Tutorial-to-Sequence-Labeling: Empower Sequence Labeling with Task-Aware Neural Language Model | a PyTorch Tutorial to Sequence Labeling
2. **cn-PyTorch-Sequence-Labeling-Tutorial-with-LM-LSTM-CRF**:这个资源是上述教程的中文翻译版本,同样提供了关于如何使用BiLSTM-CRF进行序列标注的详细指导,包括批量处理的支持。[GitHub - ofooo/cn-PyTorch-Sequence-Labeling-Tutorial-with-LM-LSTM-CRF](https://github.com/ofooo/cn-PyTorch-Sequence-Labeling-Tutorial-with-LM-LSTM-CRF)
https://github.com/ofooo/cn-PyTorch-Sequence-Labeling-Tutorial-with-LM-LSTM-CRF
3. **NLP with PyTorch: A Comprehensive Guide**:这个DataCamp教程提供了一个全面的指南,介绍了如何使用PyTorch进行自然语言处理,包括数据准备、模型定义、训练和预测。教程中提到了如何使用`DataLoader`来创建数据集,这对于批量处理是非常有用的。[DataCamp - NLP with PyTorch: A Comprehensive Guide](https://www.datacamp.com/tutorial/nlp-with-pytorch-a-comprehensive-guide)
https://www.datacamp.com/tutorial/nlp-with-pytorch-a-comprehensive-guide
改成批处理关键代码 previous_score = score[t - 1].view(batch_size, -1, 1)
def viterbi_decode(self, h: FloatTensor, mask: BoolTensor) -> List[List[int]]:"""decode labels using viterbi algorithm:param h: hidden matrix (batch_size, seq_len, num_labels):param mask: mask tensor of each sequencein mini batch (batch_size, batch_size):return: labels of each sequence in mini batch"""batch_size, seq_len, _ = h.size()# prepare the sequence lengths in each sequenceseq_lens = mask.sum(dim=1)# In mini batch, prepare the score# from the start sequence to the first labelscore = [self.start_trans.data + h[:, 0]]path = []for t in range(1, seq_len):# extract the score of previous sequence# (batch_size, num_labels, 1)previous_score = score[t - 1].view(batch_size, -1, 1)# extract the score of hidden matrix of sequence# (batch_size, 1, num_labels)h_t = h[:, t].view(batch_size, 1, -1)# extract the score in transition# from label of t-1 sequence to label of sequence of t# self.trans_matrix has the score of the transition# from sequence A to sequence B# (batch_size, num_labels, num_labels)score_t = previous_score + self.trans_matrix + h_t# keep the maximum value# and point where maximum value of each sequence# (batch_size, num_labels)best_score, best_path = score_t.max(1)score.append(best_score)path.append(best_path)
torchcrf 使用 支持批处理,torchcrf的简单使用-CSDN博客文章浏览阅读9.7k次,点赞5次,收藏33次。本文介绍了如何在PyTorch中安装和使用TorchCRF库,重点讲解了CRF模型参数设置、自定义掩码及损失函数的计算。作者探讨了如何将CRF的NLL损失与交叉熵结合,并通过自适应权重优化训练过程。虽然在单任务中效果不显著,但对于多任务学习提供了有价值的方法。
https://blog.csdn.net/csdndogo/article/details/125541213
torchcrf的简单使用-CSDN博客
为了防止文章丢失 ,吧内容转发在这里
https://blog.csdn.net/csdndogo/article/details/125541213
. 安装torchcrf,模型使用
安装:pip install TorchCRF
CRF的使用:在官网里有简单的使用说明
注意输入的格式。在其他地方下载的torchcrf有多个版本,有些版本有batch_first参数,有些没有,要看清楚有没有这个参数,默认batch_size是第一维度。
这个代码是我用来熟悉使用crf模型和损失函数用的,模拟多分类任务输入为随机数据和随机标签,所以最后的结果预测不能很好的跟标签对应。
import torch
import torch.nn as nn
import numpy as np
import random
from TorchCRF import CRF
from torch.optim import Adam
seed = 100
def seed_everything(seed=seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
num_tags = 5
model = CRF(num_tags, batch_first=True) # 这里根据情况而定
seq_len = 3
batch_size = 50
seed_everything()
trainset = torch.randn(batch_size, seq_len, num_tags) # features
traintags = (torch.rand([batch_size, seq_len])*4).floor().long() # (batch_size, seq_len)
testset = torch.randn(5, seq_len, num_tags) # features
testtags = (torch.rand([5, seq_len])*4).floor().long() # (batch_size, seq_len)
# 训练阶段
for e in range(50):
optimizer = Adam(model.parameters(), lr=0.05)
model.train()
optimizer.zero_grad()
loss = -model(trainset, traintags)
print('epoch{}: loss score is {}'.format(e, loss))
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(),5)
optimizer.step()
#测试阶段
model.eval()
loss = model(testset, testtags)
model.decode(testset)
1.1模型参数,自定义掩码mask注意事项
def forward(self, emissions, labels: LongTensor, mask: BoolTensor)
1
分别为发射矩阵(各标签的预测值),标签,掩码(注意这里的mask类型为BoolTensor)
注意:此处自定义mask掩码时,使用LongTensor类型的[1,1,1,1,0,0]会报错,需要转换成ByteTensor,下面是一个简单的获取mask的函数,输入为标签数据:
def get_crfmask(self, labels):
crfmask = []
for batch in labels:
res = [0 if d == -1 else 1 for d in batch]
crfmask.append(res)
return torch.ByteTensor(crfmask)
运行运行
2. CRF的损失函数是什么?
损失函数由真实转移路径值和所有可能情况路径转移值两部分组成,损失函数的公式为
分子为真实转移路径值,分母为所有路径总分数,上图公式在crf原始代码中为:
def forward(
self, h: FloatTensor, labels: LongTensor, mask: BoolTensor) -> FloatTensor:
log_numerator = self._compute_numerator_log_likelihood(h, labels, mask)
log_denominator = self._compute_denominator_log_likelihood(h, mask)
return log_numerator - log_denominator
CRF损失函数值为负对数似然函数(NLL),所以如果原来的模型损失函数使用的是交叉熵损失函数,两个损失函数相加时要对CRF返回的损失取负。
loss = -model(trainset, traintags)
1
3. 如何联合CRF的损失函数和自己的网络模型的交叉熵损失函数进行训练?
我想在自己的模型上添加CRF,就需要联合原本的交叉熵损失函数和CRF的损失函数,因为CRF输出的时NLL,所以在模型在我仅对该损失函数取负之后和原先函数相加。
loss2 = -crf_layer(log_prob, label, mask=crfmask)
loss1 = loss_function(log_prob.permute(0, 2, 1), label)
loss = loss1 + loss2
loss.backward()
缺陷: 效果不佳,可以尝试对loss2添加权重。此处贴一段包含两个损失函数的自适应权重训练的函数。
3.1.自适应损失函数权重
由于CRF返回的损失与原来的损失数值不在一个量级,所以产生了自适应权重调整两个权重的大小来达到优化的目的。自适应权重原本属于多任务学习部分,未深入了解,代码源自某篇复现论文的博客。
class AutomaticWeightedLoss(nn.Module):
def __init__(self, num=2):
super(AutomaticWeightedLoss, self).__init__()
params = torch.ones(num, requires_grad=True)
self.params = torch.nn.Parameter(params)
def forward(self, *x):
loss_sum = 0
for i, loss in enumerate(x):
loss_sum += 0.5 / (self.params[i] ** 2) * loss + torch.log(1 + self.params[i] ** 2)
return loss_sum
相关文章:
bilstm -crf 的torch官方的教程 不支持 batchsize 。。。。有更效率更高的方案吗
根据您的需求,您正在寻找一个支持批量处理(batch size)的BiLSTM-CRF模型的PyTorch教程。以下是一些资源,它们提供了更高效的解决方案,包括批量处理的支持: 1. **a-PyTorch-Tutorial-to-Sequence-Labeling*…...
Python面试常见问题及答案6
一、基础部分 问题1: 在Python中,如何将字符串转换为整数?如果字符串不是合法的数字字符串会怎样? 答案: 在Python中,可以使用int()函数将字符串转换为整数。如果字符串是合法的数字字符串,转换…...
代码随想录算法训练营第三天 | 链表理论基础 | 203.移除链表元素
感觉上是可以轻松完成的,因为对链接的结构,元素的删除过程心里明镜似的 实际上四处跑气 结构体的初始化好像完全忘掉了,用malloc折腾半天,忘记了用new,真想扇自己嘴巴子到飞起删除后写一个函数,把链表打印…...
1. 机器学习基本知识(5)——练习题(1)
1.7 🐦🔥练习题(本章重点回顾与总结) 0.回答格式约定: 对于书本内容的回答,将优先寻找书本内容作为答案进行回答。 书本内容回答完毕后,将对问题进行补充回答,上面分割线作为两个…...
vue 自定义组件image 和 input
本章主要是介绍自定义的组件:WInput:这是一个验证码输入框,自动校验,输入完成回调等;WImage:这是一个图片展示组件,集成了缩放,移动等操作。 目录 一、安装 二、引入组件 三、使用…...
系列3:基于Centos-8.6 Kubernetes使用nfs挂载pod的应用日志文件
每日禅语 古代,一位官员被革职遣返,心中苦闷无处排解,便来到一位禅师的法堂。禅师静静地听完了此人的倾诉,将他带入自己的禅房之中。禅师指着桌上的一瓶水,微笑着对官员说:“你看这瓶水,它已经…...
Jfinal项目整合Redis
1、引入相关依赖 <!-- https://mvnrepository.com/artifact/redis.clients/jedis --> <dependency><groupId>redis.clients</groupId><artifactId>jedis</artifactId><version>2.9.0</version> </dependency><depen…...
在Ubuntu服务器上备份文件到自己的百度网盘
文章目录 概述安装bypy同步文件定时任务脚本 概述 之前自购了一台阿里云服务器,系统镜像为Ubuntu 22.04, 并且搭建了LNMP开发环境(可以参考:《Ubuntu搭建PHP开发环境操作步骤(保姆级教程)》)。由于项目运行中会产生附…...
Unity 模板测试透视效果(URP)
可以实现笼中窥梦和PicoVR中通过VST局部透视效果。 使用到的Shader: Shader "Unlit/StencilShader" {Properties{[IntRange]_Index("Stencil Index",Range(0,255))0}SubShader{Tags{"RenderType""Opaque""Queue""Geo…...
《计算机视觉证书:开启职业发展新航道》
一、引言 在当今科技飞速发展的时代,计算机视觉技术正以惊人的速度改变着我们的生活和工作方式。从智能手机的人脸识别解锁到自动驾驶汽车的环境感知,计算机视觉技术的应用无处不在。而计算机视觉证书作为这一领域的专业认证,其作用愈发凸显…...
.NET6 WebApi第1讲:VSCode开发.NET项目、区别.NET5框架【两个框架启动流程详解】
一、使用VSCode开发.NET项目 1、创建文件夹,使用VSCode打开 2、安装扩展工具 1>C# 2>安装NuGet包管理工具,外部dll包依靠它来加载 法1》:NuGet Gallery,注意要启动科学的工具 法2》NuGet Package Manager GUl,…...
Git-分布式版本控制工具
目录 1. 概述 1. 1集中式版本控制工具 1.2分布式版本控制工具 2.Git 2.1 git 工作流程 1. 概述 在开发活动中,我们经常会遇到以下几个场景:备份、代码回滚、协同开发、追溯问题代码编写人和编写时间(追责)等。备份的话是为了…...
C++ 第10章 对文件的输入输出
https://www.bilibili.com/video/BV1cx4y1d7Ut/?p147&spm_id_from333.1007.top_right_bar_window_history.content.click&vd_sourcee8984989cddeb3ef7b7e9fd89098dbe8 🍁🍁🍁本篇为贺宏宏老师C语言视频教程文件输入输出部分笔记整理…...
【机器学习】手写数字识别的最优解:CNN+Softmax、Sigmoid与SVM的对比实战
一、基于CNNSoftmax函数进行分类 1数据集准备 2模型设计 3模型训练 4模型评估 5结果分析 二、 基于CNNsigmoid函数进行分类 1数据集准备 2模型设计 3模型训练 4模型评估 5结果分析 三、 基于CNNSVM进行分类 1数据集准备 2模型设计 3模型训练 4模型评估 5结果分…...
android 聊天界面键盘、表情切换丝滑
1、我们在聊天页面时候,往往会遇到,键盘、表情、其他选择切换时候页面会出现掉下来再弹起问题,这是因为,我们切换时候,键盘异步导致内容View高度变化,页面掉下来后,又被其他内容顶起这种很差视觉…...
Web项目图片视频加载缓慢/首屏加载白屏
Web项目图片视频加载缓慢/首屏加载白屏 文章目录 Web项目图片视频加载缓慢/首屏加载白屏一、原因二、 解决方案2.1、 图片和视频的优化2.1.1、压缩图片或视频2.1.2、 选择合适的图片或视频格式2.1.3、 使用图片或视频 CDN 加速2.1.4、Nginx中开启gzip 三、压缩工具推荐 一、原因…...
关于Git分支合并,跨仓库合并方式
关于Git合并代码的方式说明 文章目录 关于Git合并代码的方式说明前情提要开始合并方式一:git merge方式二:git cherry-pick方式三:git checkout Git跨仓库合并的准备事项前提拉取源仓库代码 前情提要 同仓库不同分支代码的合并可直接往下看文…...
[网络] UDP协议16位校验和
16位校验和是udp报头中的一个字段,绝大多数的教材和网课都会忽略这个字段,不去细究,我闲的蛋疼问了问ai,得到了一个答案,故作此文,以证明我爱学习之心惊天地泣鬼神(狗头 ai的回答 仅从作用来说,它会根据整个应用层报文进行运算,生成一个准确的数字,这个数字不能保证唯一性,但根…...
Vue 3 中的 `update:modelValue` 事件详解
在 Vue 3 中,update:modelValue 事件通常与 v-model 指令一起使用,以实现自定义组件的双向数据绑定。以下是对该事件的详细分析: 事件定义 首先,我们需要在组件中定义 update:modelValue 事件。可以使用 defineEmits 函…...
vue3+vite+ts 使用webrtc-streamer播放海康rtsp监控视频
了解webrtc-streamer webrtc-streamer 是一个使用简单机制通过 WebRTC 流式传输视频捕获设备和 RTSP 源的项目,它内置了一个小型的 HTTP server 来对 WebRTC需要的相关接口提供支持。相对于ffmpegflv.js的方案,延迟降低到了0.4秒左右,画面的…...
vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...
Windows安装Miniconda
一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...
ubuntu22.04 安装docker 和docker-compose
首先你要确保没有docker环境或者使用命令删掉docker sudo apt-get remove docker docker-engine docker.io containerd runc安装docker 更新软件环境 sudo apt update sudo apt upgrade下载docker依赖和GPG 密钥 # 依赖 apt-get install ca-certificates curl gnupg lsb-rel…...
二维FDTD算法仿真
二维FDTD算法仿真,并带完全匹配层,输入波形为高斯波、平面波 FDTD_二维/FDTD.zip , 6075 FDTD_二维/FDTD_31.m , 1029 FDTD_二维/FDTD_32.m , 2806 FDTD_二维/FDTD_33.m , 3782 FDTD_二维/FDTD_34.m , 4182 FDTD_二维/FDTD_35.m , 4793...
【HarmonyOS 5】鸿蒙中Stage模型与FA模型详解
一、前言 在HarmonyOS 5的应用开发模型中,featureAbility是旧版FA模型(Feature Ability)的用法,Stage模型已采用全新的应用架构,推荐使用组件化的上下文获取方式,而非依赖featureAbility。 FA大概是API7之…...
深入解析光敏传感技术:嵌入式仿真平台如何重塑电子工程教学
一、光敏传感技术的物理本质与系统级实现挑战 光敏电阻作为经典的光电传感器件,其工作原理根植于半导体材料的光电导效应。当入射光子能量超过材料带隙宽度时,价带电子受激发跃迁至导带,形成电子-空穴对,导致材料电导率显著提升。…...
比特币:固若金汤的数字堡垒与它的四道防线
第一道防线:机密信函——无法破解的哈希加密 将每一笔比特币交易比作一封在堡垒内部传递的机密信函。 解释“哈希”(Hashing)就是一种军事级的加密术(SHA-256),能将信函内容(交易细节…...
HTML版英语学习系统
HTML版英语学习系统 这是一个完全免费、无需安装、功能完整的英语学习工具,使用HTML CSS JavaScript实现。 功能 文本朗读练习 - 输入英文文章,系统朗读帮助练习听力和发音,适合跟读练习,模仿学习;实时词典查询 - 双…...
JS设计模式(5): 发布订阅模式
解锁JavaScript发布订阅模式:让代码沟通更优雅 在JavaScript的世界里,我们常常会遇到这样的场景:多个模块之间需要相互通信,但是又不想让它们产生过于紧密的耦合。这时候,发布订阅模式就像一位优雅的信使,…...
