当前位置: 首页 > news >正文

RNN LSTM Seq2Seq Attention

非端到端:

data  -》 cleaning -》 feature Engining (70%-80%工作 设计特征)-》 分类器 -》预测

端到端 End-to-End:

data  -》 cleaning -》Deep learning(表示学习,从数据中学习特征) -》 预测

RNN(递归神经网络

时序模型

我们知道人类并不是从零开始思考东西,就像你读这篇文章的时候,你对每个字的理解都是建立在前几个字上面,很多东西你要通过上下文才能理解。

然而传统的神经网络并不能做到持续记忆理解这一点,这是传统神经网络的主要缺点。举个例子,你打算使用传统的神经网络去对电影里每个时间点发生的事情进行分类的时候,传统的神经网络先让不能使用前一个事件去推理下一个事件。

RNN(递归神经网络)可以解决这个问题。他们是带有循环的神经网络,允许信息在其中保留。

应用 比如语音识别,语音模型,翻译,图片注释等

结构

序列形的数据就不太好用原始的神经网络处理了。为了建模序列问题,RNN引入了隐状态h(hidden state)的概念,h可以对序列形的数据提取特征,接着再转换为输出。

循环结构允许信息从当前输出传递到下一次(下个时间点)的网络输入。

 RNN其实和传统的神经网络并没有太多的不同。RNN可以看作是一个网络的多次拷贝,其中每次网络的输出都是下一次的输入。

单输入单输出

RNN比BP多了参数h0,因此RNN的神经元公式会比BP神经元多一项(f为激励函数)

隐藏层h与输出y相同

多输入单输出

由结构和公式可知,整一个RNN结构共享1组(U, W, b),这是RNN结构最重要的特性,且每一个隐藏层神经元h的计算公式是由当前输入X上一个隐藏层神经元的输出组成。

单输入多输出

这种结构通常应用于输入一个图像,输出描述该图像的文本。

多输入多输出

由于输入与输出等长,这种结构的用途就比较狭窄,仅限于输入与输出等长的序列数据如诗词文等,作诗机器人就是这么诞生的。

优点

相比于BP神经网络和CNN卷积神经网络,RNN的优势又在哪呢?我们可以看到上面的RNN结构,输入是可以多个且有序的,它可以模拟人类阅读的顺序去读取文本或者别的序列化数据,且通过隐藏层神经元的编码,上一个隐藏层神经元的信息可以传递到下一个隐藏层神经元,因而形成一定的记忆能力,能够更好地理解序列化数据。

LSTM长短期记忆网络

RNN结构的劣势

RNN结构共享1组参数(U, W, b),每一步使用的参数U、W、b都是一样的,,这是RNN结构最重要的特性。

因为 在(U, W, b)不变的情况下,梯度在反向传播过程中,不断连乘,数值不是越来越大就是越来越小,这样就出现了梯度爆炸或梯度消失的情况,所以往往用RNN去训练模型得不到预期的效果。

LSTM原理

由上文可知,RNN结构之所以出现梯度爆炸或者梯度消失,最本质的原因是因为梯度在传递过程中存在极大数量的连乘,为此有人提出了LSTM模型,它可以对有价值的信息进行记忆,放弃冗余记忆,从而减小学习难度。与RNN相比,LSTM的神经元还是基于输入X上一级的隐藏层输出h来计算,只不过内部结构变了,也就是神经元的运算公式变了,而外部结构并没有任何变化,因此上面提及的RNN各种结构都能用LSTM来替换。

相对于RNN,LSTM的神经元加入了输入门i、遗忘门f、输出门o 和内部记忆单元c。博主这里先给上一个整体的LSTM结构图如下图,之后再对它内部结构的运算逻辑进行详细的解释。

                                                        LSTM整体结构

遗忘门f:控制输入X和上一层隐藏层输出h被遗忘的程度大小

                                                        遗忘门(forget gate)

             

                                                                       遗忘门公式

输入门i:控制输入X和当前计算的状态更新到记忆单元的程度大小。

内部记忆单元c:

输出门o:控制输入X和当前输出取决于当前记忆单元的程度大小

其中σ一般选择Sigmoid作为激励函数,主要是起到门控作用。因为Sigmoid函数的输出为0~1,当输出接近0或1时,符合物理意义上的关与开。tanh函数作为生成候选记忆C的选项,因为其输出为-1~1,符合大多数场景下的0中心的特征分布,且梯度(求导)在接近0处,收敛速度比sigmoid函数

要快,这也是选择它的另外一个原因。不过LSTM的激励函数也不是一成不变的,大家可以根据自己的需求去更改,只要能更好地解决自己的问题即可。

对于一个训练好的LSTM模型,我们要知道它的每一个门(遗忘门、输出门和输入门)都有各自的(U, W, b),上述公式也有所体现,这是在训练过程中得到的。而且当输入的序列不存在有用信息时,遗忘门f的值就会接近1,那么输入门i的值接近0,这样过去有用的信息就会被保存。当输入的序列存在重要信息时,遗忘门f的值就会接近0,那么输入门i的值接近1,此时LSTM模型遗忘过去的记忆,记录重要记忆。

​因此我们可以看出由遗忘门、输出门、输入门和内部记忆单元共同控制LSTM的输出h的设计,使得整个网络更好地把握序列信息之间的关系。

Seq2Seq

 输入输出不等长的多输入多输出的RNN结构

叫Encoder-Decoder模型,也可以称之为Seq2Seq模型。

原始的N vs N RNN要求序列等长,然而我们遇到的大部分问题序列都是不等长的,如机器翻译

中,源语言和目标语言的句子往往并没有相同的长度。

为此,Encoder-Decoder结构先将输入数据编码成一个上下文向量c:

 得到c有多种方式,最简单的方法就是把Encoder的最后一个隐状态赋值给c,还可以对最后的隐状态做一个变换得到c,也可以对所有的隐状态做变换。

拿到c之后,就用另一个RNN网络对其进行解码,这部分RNN网络被称为Decoder。具体做法就是将c当做之前的初始状态h0输入到Decoder中:

由于这种Encoder-Decoder结构不限制输入和输出的序列长度,因此应用的范围非常广泛,比如:

  • 机器翻译。Encoder-Decoder的最经典应用,事实上这一结构就是在机器翻译领域最先提出的
  • 文本摘要。输入是一段文本序列,输出是这段文本序列的摘要序列。
  • 阅读理解。将输入的文章和问题分别编码,再对其进行解码得到问题的答案。
  • 语音识别

。输入是语音信号序列,输出是文字序列。

利用RNN和自编码器的原理构造一个翻译机器人,同样的,这个自编码器(翻译机器人)的输入也等于输出,只不过输入与输出用不同的语言去表示罢了。

Seq2Seq + Attention

Seq2Seq模型可以完成机器翻译等任务,但我们从它的结构可以看出,解码器decoder的输入都是编码器encoder的同一个输出,也就是说不管输入的语句是什么,编码器encoder都会将它转换成同一个中间语义h'。而我们知道的是每一句话都有其侧重点,那翻译当然也应该注意其侧重点,不应该是每一个词在一个句子中都具有同等地位,这样翻译出来的句子肯定效果不佳。所以,有人为此提出了注意力机制(Attention Mechanism),让我们在使用Seq2Seq的过程中,加入注意力机制,聚焦重点,提升模型效果。

                                                注意力模型(解码器Decoder)

如上图,注意力机制下的Seq2Seq模型的输入与输出是等长的,和上面博主介绍的多输入多输出的RNN结构一样,只是输入变了,输入不是直接的序列输入,而是经过编码器encoder转换的中间语义C,而这些输入C也各不相同,每一个C都是由权重w和译码器的隐藏层输出h加权组成,如下图。

                                                        中间语义转换示意图

在解码器decoder部分,由于输入的顺序不同,中间语义C1,C2,C3之间的权值表征也不同,这也就是我们所说的注意力机制。换言之,随着不同时刻,重点一直在变化,而这些变化则由上图的权重w去表示,比如C1的重点在‘中’这个字,那么中间语义可以表示为C1=0.6 * h1 + 0.2 * h2 + 0.1 * h3 + 0.1 * h4 (权值可以看成概率,且概率加起来为1)。

                                                        中间语义转换公式

此时,我们唯一要解决的是,如何去求中间语义C的权值w表征。这就涉及到注意力模型的另一部分(编码器Encoder),如下图。F函数和softmax函数,大家可以理解为我们要计算当前的hi与全部h(包括hi)之间的差别,从而计算出在i时刻下,每一个h对应的权值(即概率)。换言之,大家可以将下图看成分类问题,与hi越相近的,输出的概率也就越大。

                                        注意力模型(编码器Encoder)

到这里,几种常见的RNN结构也就介绍完了,它们的训练过程与之前讲的多输入单输出的RNN结构训练过程并没有太多的区别,也是基于梯度下降原则去不断缩小真实值与预测值之间的差值,只不过有些结构的输出值多了一点罢了。

Attention

在Encoder-Decoder结构中,Encoder把所有的输入序列都编码成一个统一的语义特征c再解码,因此, c中必须包含原始序列中的所有信息,它的长度就成了限制模型性能的瓶颈。如机器翻译问题,当要翻译的句子较长时,一个c可能存不下那么多信息,就会造成翻译精度的下降。

Attention机制通过在每个时间输入不同的c来解决这个问题,下图是带有Attention机制Decoder:

以机器翻译为例(将中文翻译成英文):

 

 

相关文章:

RNN LSTM Seq2Seq Attention

非端到端: data -》 cleaning -》 feature Engining (70%-80%工作 设计特征)-》 分类器 -》预测 端到端 End-to-End: data -》 cleaning -》Deep learning(表示学习,从数据中学习特征) -》…...

硬件设计-ADC和低本底噪声为何至关重要

简介 在工程领域,精度是核心要素。无论是对先进电子设备执行质量和性能检测,还是对复杂系统进行调试,测量精度的高低都直接关系到项目的成功与否。这时,示波器中的垂直精度概念就显得尤为重要,它衡量的是电压与实际被…...

个性化域名配置

1 申请免费SSL证书 访问 https://certbot.eff.org ,可申请 通配符证书,每次申请可以使用3个月,到期可以免费续期。 2 配置nginx server index.conf 配置如下: server {listen 80;server_name biwow.com www.biwow.com;return …...

uniapp中打包应用后,组件在微信小程序和其他平台实现不同的样式

今天,我们来介绍一下,uniapp中如何实现打包应用后,组件在微信小程序和其他平台不同的样式,在这里,我们使用背景颜色进行演示,使用 UniApp 提供的 uni.getSystemInfoSync() 方法来获取系统信息,包…...

MRI脑肿瘤检测数据集,使用500张原始图片标注,支持yolo,coco,voc格式

MRI脑肿瘤检测数据集,使用500张原始图片标注,支持yolo,coco,voc格式 数据集下载: https://download.csdn.net/download/pbymw8iwm/90125474 https://download.csdn.net/download/pbymw8iwm/90125473 https://downl…...

JumpServer开源堡垒机搭建及使用

目录 一,产品介绍 二,功能介绍 三,系统架构 3.1 应用架构 3.2 组件说明 3.3 逻辑架构 3.3 逻辑架构 四,linux单机部署及方式选择 4.1 操作系统要求(JumpServer-v3系列版本) 4.1.1 数据库 4.1.3创建数据库参考 4.2 在线安装 4.2.1 环境访问 4.3 基于docker容…...

Java 编程旅程(二)

在前一篇博客中,我们介绍了 Java 编程的基础知识和入门步骤。现在,我们将继续深入探讨 Java 的一些高级特性,以帮助你进一步提升编程技能。通过这篇博客,你将学习到更复杂的概念和技术,比如面向对象编程(OO…...

一、springcloud 入门——笔记

1. 学习之前要知道的 springcloud 应用的技术 2. springboot 和 springcloud 的版本选型 官网介绍:https://spring.io/projects/spring-cloud/#overview 生成新的Spring Cloud项目 最简单的入门方法是访问start.spring.io,选择您的Spring Boot版本和要使…...

思考:VSCode 的宏观工作原理 快速入门 VSCodium (****)

23个常用的VSCode快捷键&#xff08;动图演示&#xff09;> https://www.php.cn/faq/441696.html VSCodium AppImage 版 使用记录 https://blog.csdn.net/ken2232/article/details/143591323 **** 初步比较&#xff1a;VSCode > pk < VSCodium << 在下…...

C++ day8——模版

笔记脑图 作业 template <class T> class mylist{ public:// 这是一个链表的节点struct Link{T val;Link* next; } 增 &#xff1a;insert(T val) 在链表中创建新节点&#xff0c;节点上保存的数据为 val删&#xff1a;remove(T val) 移除链表中数据为 val 的节点改…...

【CSS in Depth 2 精译_080】 13.1:CSS 渐变效果(中)——不同色彩空间的颜色插值算法在 CSS 渐变中的应用

当前内容所在位置&#xff08;可进入专栏查看其他译好的章节内容&#xff09; 第四部分 视觉增强技术 ✔️【第 13 章 渐变、阴影与混合模式】 ✔️ 13.1 渐变 ✔️ 13.1.1 使用多个颜色节点&#xff08;上&#xff09;13.1.2 颜色插值方法&#xff08;中&#xff09; ✔️13.1…...

红日靶场1(搭建打靶)

搭建 靶场下载&#xff1a; http://vulnstack.qiyuanxuetang.net/vuln/detail/2/ (13G&#xff0c;需要百度网盘会员) 下载好靶场文件后直接解压 直接用虚拟机打开靶场 更改网络ip 需要模拟内网和外网两个网段&#xff0c; Win7 虚拟机相当于网关服务器&#xff0c;所以需要…...

LivePortrait 部署笔记

LivePortrait 开源地址&#xff1a; https://github.com/KwaiVGI/LivePortrait 模型下载&#xff1a; export HF_ENDPOINThttps://hf-mirror.com huggingface-cli download --resume-download KwaiVGI/LivePortrait --local-dir models--KwaiVGI--LivePortrait...

Greenhills Lib操作-查看Lib信息与将lib中的data段link到指定区域

文章目录 前言Greenhillls中gsize的用法修改ld文件将lib中的data段指定区域示例定义与链接总结 前言 项目开发过程中&#xff0c;遇到客户开发ASW&#xff0c;提供Lib进行集成&#xff0c;但ASW中的标定量没有定义对应的data段&#xff0c;导致无法将标定量指定到特定的内存。…...

【十进制整数转换为其他进制数——短除形式的贪心算法】

之前写过一篇用贪心算法计算十进制转换二进制的方法&#xff0c;详见&#xff1a;用贪心算法计算十进制数转二进制数&#xff08;整数部分&#xff09;_短除法求二进制-CSDN博客 经过一段时间的研究&#xff0c;本人又发现两个规律&#xff1a; 1、不仅仅十进制整数转二进制可…...

【JavaEE】网络(2)

一、网络编程套接字 1.1 基础概念 【网络编程】指网络上的主机&#xff0c;通过不同的进程&#xff0c;以编程的方式实现网络通信&#xff1b;当然&#xff0c;我们只要满足进程不同就行&#xff0c;所以即便是同一个主机&#xff0c;只要是不同进程&#xff0c;基于网络来传…...

AI for Science 的完美实践——科研文献的智慧化提取获得“综述性文摘”的软件开发

实践是检验真理的唯一标准&#xff01;show your codes! 1 综述性文摘的需求 再简单不过了。 甲方&#xff08;综述性文摘&#xff09;需求&#xff1a;针对项目特征或描述&#xff0c;从几百篇相关的科研论文&#xff08;PDF&#xff09;中智能提取相关内容&#xff0c;包括…...

前端使用xlsx.js实现 Excel 文件的导入与导出功能

前端使用xlsx.js实现 Excel 文件的导入与导出功能 在现代的 Web 开发中&#xff0c;处理文件上传和导出功能已经变得越来越常见&#xff0c;尤其是 Excel 文件的导入与导出。 我们将使用 Vue.js 和 XLSX.js 库来处理 Excel 文件的读取和生成。XLSX.js 是一个强大的 JavaScrip…...

React简单了解

原理简化了解 import React from "react" import { createRoot } form "react-dom/client"const element React.createElement(p,{id: hello},Hello World! )const container document.querySelector(#root) const root createRoot(container) root.r…...

backbone 和Run-Length Encoding (RLE)含义

在深度学习中&#xff0c;特别是在图像分割任务中&#xff0c;backbone&#xff08;主干网络&#xff09;是指用于特征提取的预训练神经网络模型。Backbone 的主要作用是从输入图像中提取有用的特征&#xff0c;这些特征随后会被用于更高层次的任务&#xff0c;如分类、检测或分…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

CentOS下的分布式内存计算Spark环境部署

一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架&#xff0c;相比 MapReduce 具有以下核心优势&#xff1a; 内存计算&#xff1a;数据可常驻内存&#xff0c;迭代计算性能提升 10-100 倍&#xff08;文档段落&#xff1a;3-79…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

Webpack性能优化:构建速度与体积优化策略

一、构建速度优化 1、​​升级Webpack和Node.js​​ ​​优化效果​​&#xff1a;Webpack 4比Webpack 3构建时间降低60%-98%。​​原因​​&#xff1a; V8引擎优化&#xff08;for of替代forEach、Map/Set替代Object&#xff09;。默认使用更快的md4哈希算法。AST直接从Loa…...

免费数学几何作图web平台

光锐软件免费数学工具&#xff0c;maths,数学制图&#xff0c;数学作图&#xff0c;几何作图&#xff0c;几何&#xff0c;AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...

三分算法与DeepSeek辅助证明是单峰函数

前置 单峰函数有唯一的最大值&#xff0c;最大值左侧的数值严格单调递增&#xff0c;最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值&#xff0c;最小值左侧的数值严格单调递减&#xff0c;最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...

Python 实现 Web 静态服务器(HTTP 协议)

目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1&#xff09;下载安装包2&#xff09;配置环境变量3&#xff09;安装镜像4&#xff09;node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1&#xff09;使用 http-server2&#xff09;详解 …...

AI语音助手的Python实现

引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...

深入浅出Diffusion模型:从原理到实践的全方位教程

I. 引言&#xff1a;生成式AI的黎明 – Diffusion模型是什么&#xff1f; 近年来&#xff0c;生成式人工智能&#xff08;Generative AI&#xff09;领域取得了爆炸性的进展&#xff0c;模型能够根据简单的文本提示创作出逼真的图像、连贯的文本&#xff0c;乃至更多令人惊叹的…...