深度学习基础--将yolov5的backbone模块用于目标识别会出现怎么效果呢??
- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
前言
yolov5
网络结构比较复杂,上次我们简要介绍了yolov5
网络模块,并且复现了C3
模块,深度学习基础–yolov5网络结构简介,C3模块构建;- 这一次我们将复现backbone模块,将目标检测网络结构用到目标识别上,会是怎样的效果呢???;
- 这周是考试周,周一到周四一直都在准备考试和去考试,昨天开始又发高烧,更新较慢;
- 欢迎收藏加关注,本人将会持续更新。
文章目录
- 案例
- 1、数据处理
- 1、导入库
- 2、查看数据类别
- 3、导入数据
- 4、数据集划分
- 5、展示一批数据
- 2、模型构建
- 3、模型训练
- 1、构建训练集
- 2、构建测试集
- 3、设置超参数
- 4、模型正式训练
- 5、结果显示和评估
- 1、结果显示
- 2、评估
案例
将backbone模块用于识别天气分类
1、数据处理
1、导入库
import torch
import torchvision
import torch.nn as nn
import torchvision.transforms as transforms
from torchvision import datasets, transformsdevice = "cuda" if torch.cuda.is_available() else "cpu"device
'cuda'
2、查看数据类别
import os, pathlib data_dir = './data/'
data_dir = pathlib.Path(data_dir)classnames = [str(path).split("\\")[0] for path in os.listdir(data_dir)]
classnames
['cloudy', 'rain', 'shine', 'sunrise']
3、导入数据
data_transforms = transforms.Compose([transforms.Resize([224, 224]),transforms.ToTensor(),transforms.Normalize( # 数据标准化处理---> 转化为 标准状态分布,使模型更容易收敛mean=[0.485, 0.456, 0.406], # rgb,均值std=[0.229, 0.224, 0.225] # rgb,标准差,这两个从数据集中随机抽样得到的)
])total_data = datasets.ImageFolder("./data/", data_transforms)
total_data
Dataset ImageFolderNumber of datapoints: 1125Root location: ./data/StandardTransform
Transform: Compose(Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=True)ToTensor()Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]))
4、数据集划分
训练集 :测试集 = 8 :2
train_size = int(len(total_data) * 0.8)
test_size = len(total_data) - train_size
train_data, test_data = torch.utils.data.random_split(total_data, [train_size, test_size])
print("train_size", len(train_data))
print("test_size", len(test_data))
train_size 900
test_size 225
# 动态加载数据集
batch_size = 4train_dl = torch.utils.data.DataLoader(train_data,batch_size=batch_size,shuffle=True
)test_dl = torch.utils.data.DataLoader(test_data,batch_size=batch_size,shuffle=True
)
# 查看数据格式
temp_data, temp_label = next(iter(train_dl))print("data: ", temp_data.shape)
print("data_labels: ", temp_label)
data: torch.Size([4, 3, 224, 224])
data_labels: tensor([3, 2, 0, 0])
5、展示一批数据
这里一批次大小:4
import matplotlib.pyplot as plt temp_images, temp_labels = next(iter(test_dl))plt.figure(figsize=(20, 10))for i in range(4):plt.subplot(5, 5, i + 1)plt.imshow(temp_images[i].cpu().numpy().transpose(1, 2, 0)) # (C, H, W) ==> (H, W, C)plt.title(classnames[temp_labels[i]])plt.axis('off')plt.show()
2、模型构建
整体网络:
C3网络参考:深度学习基础–yolov5网络结构简介,C3模块构建
SPPF网络模块图结构如下:
import torch.nn.functional as F
import warnings # 确保导入 warnings 模块# 自动计算p(填充)
def autop(k, p=None):if p is None:p = k // 2 if isinstance(k, int) else [i // 2 for i in k]return p # Conv模块搭建
'''
卷积层 + 标准化 + 激活函数
'''
class Conv(nn.Module):def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):super().__init__()'''groups: 1: 标准卷积c1: 深度卷积1 ~ c1: 分组卷积bias:false: 不使用偏置'''self.conv = nn.Conv2d(c1, c2, kernel_size=k, stride=s, padding=autop(k, p), groups=g, bias=False) self.bn = nn.BatchNorm2d(c2)'''act:true: silu激活函数否则: 如果是nn.Mudule(如: nn.Relu), 则调用本身否则: Identity, 什么都不做'''self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module()) else nn.Identity())def forward(self,x):return self.act(self.bn(self.conv(x)))# Bottleneck模块, 用于特征提取和用于防止梯度消失、梯度爆炸问题
class Bottleneck(nn.Module):def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # shortcut: 是否需要残差连接, e: 模型深度super().__init__()c_ = int(c1 * 2)self.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c_, c2, 3, 1, g=g)self.add = shortcut and c1 == c2 def forward(self, x):return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))# 搭建C3模块
class C3(nn.Module):def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):super().__init__()'''刚开始: 卷积层2层后面: n层bottlenck后 concat后 conv'''c_ = int(c1 * e)self.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c1, c_, 1, 1) # 用于拼接self.cv3 = Conv(2 * c_, c2, 1)self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n))) # * 解包def forward(self, x):# 拼接,按照 dim=1维进行拼接,故列要相同return self.cv3(torch.cat([self.m(self.cv1(x)), self.cv2(x)], dim=1)) # 结合图就知道了结构# 搭建SPPF模块,用于特征融合
class SPPF(nn.Module):def __init__(self, c1, c2, k=5):super().__init__()c_ = c1 // 2 self.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c_ * 4, c2, 1, 1) # 模型融合,这个时候模型通道扩大4倍,套用池化层公式,发现通过.m 通道数数不变self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2) # 套用卷积层、池化层公式,发现输出通道不变def forward(self, x):x = self.cv1(x)with warnings.catch_warnings():warnings.simplefilter('ignore')y1 = self.m(x)y2 = self.m(y1)y3 = self.m(y2)return self.cv2(torch.cat([x, y1, y2, y3], 1)) # 结合图# 搭建backbone模块
class Yolov5_backbone(nn.Module):def __init__(self):super(Yolov5_backbone, self).__init__()# 采用常规卷积, kernel_size, stride 与 yolov5.yaml配置文件一致self.conv_1 = Conv(3, 64, 3, 2, 2) self.conv_2 = Conv(64, 128, 3, 2)self.c3_3 = C3(128, 128)self.conv_4 = Conv(128, 256, 3, 2)self.c3_5 = C3(256, 256)self.conv_6 = Conv(256, 512, 3, 2)self.c3_7 = C3(512, 512)self.conv_8 = Conv(512, 1024, 3, 2)self.c3_9 = C3(1024, 1024)self.SPPF_10 = SPPF(1024, 1024, 5)self.classifiler = nn.Sequential(nn.Linear(in_features=65536, out_features=100),nn.ReLU(),nn.Linear(in_features=100, out_features=len(classnames)))def forward(self, x):x = self.conv_1(x)x = self.conv_2(x)x = self.c3_3(x)x = self.conv_4(x)x = self.c3_5(x)x = self.conv_6(x)x = self.c3_7(x)x = self.conv_8(x)x = self.c3_9(x)x = self.SPPF_10(x)x = torch.flatten(x, start_dim=1)x = self.classifiler(x)return x
# 输出参数
model = Yolov5_backbone().to(device)
model
Yolov5_backbone((conv_1): Conv((conv): Conv2d(3, 64, kernel_size=(3, 3), stride=(2, 2), padding=(2, 2), bias=False)(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU())(conv_2): Conv((conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU())(c3_3): C3((cv1): Conv((conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU())(cv2): Conv((conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU())(cv3): Conv((conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU())(m): Sequential((0): Bottleneck((cv1): Conv((conv): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU())(cv2): Conv((conv): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU()))))(conv_4): Conv((conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU())(c3_5): C3((cv1): Conv((conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU())(cv2): Conv((conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU())(cv3): Conv((conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU())(m): Sequential((0): Bottleneck((cv1): Conv((conv): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU())(cv2): Conv((conv): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU()))))(conv_6): Conv((conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU())(c3_7): C3((cv1): Conv((conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU())(cv2): Conv((conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU())(cv3): Conv((conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU())(m): Sequential((0): Bottleneck((cv1): Conv((conv): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU())(cv2): Conv((conv): Conv2d(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU()))))(conv_8): Conv((conv): Conv2d(512, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU())(c3_9): C3((cv1): Conv((conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU())(cv2): Conv((conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU())(cv3): Conv((conv): Conv2d(1024, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU())(m): Sequential((0): Bottleneck((cv1): Conv((conv): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU())(cv2): Conv((conv): Conv2d(1024, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU()))))(SPPF_10): SPPF((cv1): Conv((conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU())(cv2): Conv((conv): Conv2d(2048, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU())(m): MaxPool2d(kernel_size=5, stride=1, padding=2, dilation=1, ceil_mode=False))(classifiler): Sequential((0): Linear(in_features=65536, out_features=100, bias=True)(1): ReLU()(2): Linear(in_features=100, out_features=4, bias=True))
)
import torchsummary as summary
summary.summary(model, (3, 224, 224))
----------------------------------------------------------------Layer (type) Output Shape Param #
================================================================Conv2d-1 [-1, 64, 113, 113] 1,728BatchNorm2d-2 [-1, 64, 113, 113] 128SiLU-3 [-1, 64, 113, 113] 0Conv-4 [-1, 64, 113, 113] 0Conv2d-5 [-1, 128, 57, 57] 73,728BatchNorm2d-6 [-1, 128, 57, 57] 256SiLU-7 [-1, 128, 57, 57] 0Conv-8 [-1, 128, 57, 57] 0Conv2d-9 [-1, 64, 57, 57] 8,192BatchNorm2d-10 [-1, 64, 57, 57] 128SiLU-11 [-1, 64, 57, 57] 0Conv-12 [-1, 64, 57, 57] 0Conv2d-13 [-1, 128, 57, 57] 8,192BatchNorm2d-14 [-1, 128, 57, 57] 256SiLU-15 [-1, 128, 57, 57] 0Conv-16 [-1, 128, 57, 57] 0Conv2d-17 [-1, 64, 57, 57] 73,728BatchNorm2d-18 [-1, 64, 57, 57] 128SiLU-19 [-1, 64, 57, 57] 0Conv-20 [-1, 64, 57, 57] 0Bottleneck-21 [-1, 64, 57, 57] 0Conv2d-22 [-1, 64, 57, 57] 8,192BatchNorm2d-23 [-1, 64, 57, 57] 128SiLU-24 [-1, 64, 57, 57] 0Conv-25 [-1, 64, 57, 57] 0Conv2d-26 [-1, 128, 57, 57] 16,384BatchNorm2d-27 [-1, 128, 57, 57] 256SiLU-28 [-1, 128, 57, 57] 0Conv-29 [-1, 128, 57, 57] 0C3-30 [-1, 128, 57, 57] 0Conv2d-31 [-1, 256, 29, 29] 294,912BatchNorm2d-32 [-1, 256, 29, 29] 512SiLU-33 [-1, 256, 29, 29] 0Conv-34 [-1, 256, 29, 29] 0Conv2d-35 [-1, 128, 29, 29] 32,768BatchNorm2d-36 [-1, 128, 29, 29] 256SiLU-37 [-1, 128, 29, 29] 0Conv-38 [-1, 128, 29, 29] 0Conv2d-39 [-1, 256, 29, 29] 32,768BatchNorm2d-40 [-1, 256, 29, 29] 512SiLU-41 [-1, 256, 29, 29] 0Conv-42 [-1, 256, 29, 29] 0Conv2d-43 [-1, 128, 29, 29] 294,912BatchNorm2d-44 [-1, 128, 29, 29] 256SiLU-45 [-1, 128, 29, 29] 0Conv-46 [-1, 128, 29, 29] 0Bottleneck-47 [-1, 128, 29, 29] 0Conv2d-48 [-1, 128, 29, 29] 32,768BatchNorm2d-49 [-1, 128, 29, 29] 256SiLU-50 [-1, 128, 29, 29] 0Conv-51 [-1, 128, 29, 29] 0Conv2d-52 [-1, 256, 29, 29] 65,536BatchNorm2d-53 [-1, 256, 29, 29] 512SiLU-54 [-1, 256, 29, 29] 0Conv-55 [-1, 256, 29, 29] 0C3-56 [-1, 256, 29, 29] 0Conv2d-57 [-1, 512, 15, 15] 1,179,648BatchNorm2d-58 [-1, 512, 15, 15] 1,024SiLU-59 [-1, 512, 15, 15] 0Conv-60 [-1, 512, 15, 15] 0Conv2d-61 [-1, 256, 15, 15] 131,072BatchNorm2d-62 [-1, 256, 15, 15] 512SiLU-63 [-1, 256, 15, 15] 0Conv-64 [-1, 256, 15, 15] 0Conv2d-65 [-1, 512, 15, 15] 131,072BatchNorm2d-66 [-1, 512, 15, 15] 1,024SiLU-67 [-1, 512, 15, 15] 0Conv-68 [-1, 512, 15, 15] 0Conv2d-69 [-1, 256, 15, 15] 1,179,648BatchNorm2d-70 [-1, 256, 15, 15] 512SiLU-71 [-1, 256, 15, 15] 0Conv-72 [-1, 256, 15, 15] 0Bottleneck-73 [-1, 256, 15, 15] 0Conv2d-74 [-1, 256, 15, 15] 131,072BatchNorm2d-75 [-1, 256, 15, 15] 512SiLU-76 [-1, 256, 15, 15] 0Conv-77 [-1, 256, 15, 15] 0Conv2d-78 [-1, 512, 15, 15] 262,144BatchNorm2d-79 [-1, 512, 15, 15] 1,024SiLU-80 [-1, 512, 15, 15] 0Conv-81 [-1, 512, 15, 15] 0C3-82 [-1, 512, 15, 15] 0Conv2d-83 [-1, 1024, 8, 8] 4,718,592BatchNorm2d-84 [-1, 1024, 8, 8] 2,048SiLU-85 [-1, 1024, 8, 8] 0Conv-86 [-1, 1024, 8, 8] 0Conv2d-87 [-1, 512, 8, 8] 524,288BatchNorm2d-88 [-1, 512, 8, 8] 1,024SiLU-89 [-1, 512, 8, 8] 0Conv-90 [-1, 512, 8, 8] 0Conv2d-91 [-1, 1024, 8, 8] 524,288BatchNorm2d-92 [-1, 1024, 8, 8] 2,048SiLU-93 [-1, 1024, 8, 8] 0Conv-94 [-1, 1024, 8, 8] 0Conv2d-95 [-1, 512, 8, 8] 4,718,592BatchNorm2d-96 [-1, 512, 8, 8] 1,024SiLU-97 [-1, 512, 8, 8] 0Conv-98 [-1, 512, 8, 8] 0Bottleneck-99 [-1, 512, 8, 8] 0Conv2d-100 [-1, 512, 8, 8] 524,288BatchNorm2d-101 [-1, 512, 8, 8] 1,024SiLU-102 [-1, 512, 8, 8] 0Conv-103 [-1, 512, 8, 8] 0Conv2d-104 [-1, 1024, 8, 8] 1,048,576BatchNorm2d-105 [-1, 1024, 8, 8] 2,048SiLU-106 [-1, 1024, 8, 8] 0Conv-107 [-1, 1024, 8, 8] 0C3-108 [-1, 1024, 8, 8] 0Conv2d-109 [-1, 512, 8, 8] 524,288BatchNorm2d-110 [-1, 512, 8, 8] 1,024SiLU-111 [-1, 512, 8, 8] 0Conv-112 [-1, 512, 8, 8] 0MaxPool2d-113 [-1, 512, 8, 8] 0MaxPool2d-114 [-1, 512, 8, 8] 0MaxPool2d-115 [-1, 512, 8, 8] 0Conv2d-116 [-1, 1024, 8, 8] 2,097,152BatchNorm2d-117 [-1, 1024, 8, 8] 2,048SiLU-118 [-1, 1024, 8, 8] 0Conv-119 [-1, 1024, 8, 8] 0SPPF-120 [-1, 1024, 8, 8] 0Linear-121 [-1, 100] 6,553,700ReLU-122 [-1, 100] 0Linear-123 [-1, 4] 404
================================================================
Total params: 25,213,112
Trainable params: 25,213,112
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 149.98
Params size (MB): 96.18
Estimated Total Size (MB): 246.74
----------------------------------------------------------------
3、模型训练
1、构建训练集
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset) # 总数目num_batch = len(dataloader) # 批次数目train_acc, train_loss = 0, 0for X, y in dataloader:X, y = X.to(device), y.to(device) predict = model(X)loss = loss_fn(predict, y)# 梯度清0、求导、重新设置参数optimizer.zero_grad()loss.backward()optimizer.step()train_acc += (predict.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc /= sizetrain_loss /= num_batchreturn train_acc, train_loss
2、构建测试集
def test(dataloader, model, loss_fn):size = len(dataloader.dataset)num_batch = len(dataloader)test_acc, test_loss = 0, 0with torch.no_grad():for X, y in dataloader:X, y = X.to(device), y.to(device)predict = model(X)loss = loss_fn(predict, y)test_acc += (predict.argmax(1) == y).type(torch.float).sum().item()test_loss += loss.item()test_acc /= size test_loss /= num_batchreturn test_acc, test_loss
3、设置超参数
learn_rate = 1e-4
optimizer = torch.optim.Adam(model.parameters(), lr=learn_rate)
loss_fn = nn.CrossEntropyLoss()
4、模型正式训练
import copy epochs = 60train_acc, train_loss, test_acc, test_loss = [], [], [], []best_acc = 0for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)# 保存最佳模型到 best_modelif epoch_test_acc > best_acc:best_acc = epoch_test_accbest_model = copy.deepcopy(model)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)# 获取当前的学习率lr = optimizer.state_dict()['param_groups'][0]['lr']template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss, lr))# 保存最佳模型到文件中
PATH = './best_model.pth' # 保存的参数文件名
torch.save(model.state_dict(), PATH)print('Done')
Epoch: 1, Train_acc:59.0%, Train_loss:1.106, Test_acc:71.1%, Test_loss:0.740, Lr:1.00E-04
Epoch: 2, Train_acc:70.0%, Train_loss:0.776, Test_acc:83.1%, Test_loss:0.468, Lr:1.00E-04
Epoch: 3, Train_acc:75.2%, Train_loss:0.661, Test_acc:84.0%, Test_loss:0.461, Lr:1.00E-04
Epoch: 4, Train_acc:77.4%, Train_loss:0.605, Test_acc:88.4%, Test_loss:0.396, Lr:1.00E-04
Epoch: 5, Train_acc:80.3%, Train_loss:0.529, Test_acc:82.7%, Test_loss:0.415, Lr:1.00E-04
Epoch: 6, Train_acc:83.8%, Train_loss:0.422, Test_acc:83.6%, Test_loss:0.416, Lr:1.00E-04
Epoch: 7, Train_acc:85.8%, Train_loss:0.423, Test_acc:87.1%, Test_loss:0.343, Lr:1.00E-04
Epoch: 8, Train_acc:85.6%, Train_loss:0.393, Test_acc:87.6%, Test_loss:0.306, Lr:1.00E-04
Epoch: 9, Train_acc:86.3%, Train_loss:0.354, Test_acc:89.3%, Test_loss:0.338, Lr:1.00E-04
Epoch:10, Train_acc:86.6%, Train_loss:0.340, Test_acc:92.9%, Test_loss:0.276, Lr:1.00E-04
Epoch:11, Train_acc:88.8%, Train_loss:0.317, Test_acc:90.2%, Test_loss:0.290, Lr:1.00E-04
Epoch:12, Train_acc:87.9%, Train_loss:0.327, Test_acc:88.0%, Test_loss:0.338, Lr:1.00E-04
Epoch:13, Train_acc:89.2%, Train_loss:0.315, Test_acc:92.0%, Test_loss:0.337, Lr:1.00E-04
Epoch:14, Train_acc:91.1%, Train_loss:0.230, Test_acc:92.0%, Test_loss:0.369, Lr:1.00E-04
Epoch:15, Train_acc:93.3%, Train_loss:0.182, Test_acc:89.8%, Test_loss:0.278, Lr:1.00E-04
Epoch:16, Train_acc:91.6%, Train_loss:0.229, Test_acc:90.2%, Test_loss:0.290, Lr:1.00E-04
Epoch:17, Train_acc:90.9%, Train_loss:0.230, Test_acc:91.6%, Test_loss:0.272, Lr:1.00E-04
Epoch:18, Train_acc:93.9%, Train_loss:0.152, Test_acc:92.0%, Test_loss:0.280, Lr:1.00E-04
Epoch:19, Train_acc:94.7%, Train_loss:0.159, Test_acc:92.0%, Test_loss:0.262, Lr:1.00E-04
Epoch:20, Train_acc:95.9%, Train_loss:0.124, Test_acc:91.1%, Test_loss:0.260, Lr:1.00E-04
Epoch:21, Train_acc:95.7%, Train_loss:0.102, Test_acc:88.9%, Test_loss:0.342, Lr:1.00E-04
Epoch:22, Train_acc:95.9%, Train_loss:0.113, Test_acc:92.4%, Test_loss:0.275, Lr:1.00E-04
Epoch:23, Train_acc:96.1%, Train_loss:0.130, Test_acc:92.9%, Test_loss:0.308, Lr:1.00E-04
Epoch:24, Train_acc:94.8%, Train_loss:0.161, Test_acc:86.7%, Test_loss:0.456, Lr:1.00E-04
Epoch:25, Train_acc:95.2%, Train_loss:0.139, Test_acc:89.3%, Test_loss:0.428, Lr:1.00E-04
Epoch:26, Train_acc:96.0%, Train_loss:0.103, Test_acc:92.9%, Test_loss:0.313, Lr:1.00E-04
Epoch:27, Train_acc:96.0%, Train_loss:0.098, Test_acc:88.9%, Test_loss:0.520, Lr:1.00E-04
Epoch:28, Train_acc:97.2%, Train_loss:0.079, Test_acc:91.1%, Test_loss:0.404, Lr:1.00E-04
Epoch:29, Train_acc:98.6%, Train_loss:0.037, Test_acc:92.0%, Test_loss:0.270, Lr:1.00E-04
Epoch:30, Train_acc:98.8%, Train_loss:0.033, Test_acc:88.4%, Test_loss:0.520, Lr:1.00E-04
Epoch:31, Train_acc:95.6%, Train_loss:0.139, Test_acc:91.6%, Test_loss:0.370, Lr:1.00E-04
Epoch:32, Train_acc:96.7%, Train_loss:0.116, Test_acc:89.3%, Test_loss:0.376, Lr:1.00E-04
Epoch:33, Train_acc:96.4%, Train_loss:0.102, Test_acc:91.6%, Test_loss:0.342, Lr:1.00E-04
Epoch:34, Train_acc:98.6%, Train_loss:0.049, Test_acc:87.1%, Test_loss:0.417, Lr:1.00E-04
Epoch:35, Train_acc:97.9%, Train_loss:0.068, Test_acc:90.7%, Test_loss:0.423, Lr:1.00E-04
Epoch:36, Train_acc:98.3%, Train_loss:0.048, Test_acc:89.3%, Test_loss:0.492, Lr:1.00E-04
Epoch:37, Train_acc:98.0%, Train_loss:0.054, Test_acc:91.1%, Test_loss:0.355, Lr:1.00E-04
Epoch:38, Train_acc:98.6%, Train_loss:0.060, Test_acc:92.4%, Test_loss:0.402, Lr:1.00E-04
Epoch:39, Train_acc:97.9%, Train_loss:0.065, Test_acc:86.7%, Test_loss:0.498, Lr:1.00E-04
Epoch:40, Train_acc:98.0%, Train_loss:0.055, Test_acc:88.4%, Test_loss:0.514, Lr:1.00E-04
Epoch:41, Train_acc:99.1%, Train_loss:0.029, Test_acc:90.7%, Test_loss:0.381, Lr:1.00E-04
Epoch:42, Train_acc:98.0%, Train_loss:0.069, Test_acc:92.4%, Test_loss:0.377, Lr:1.00E-04
Epoch:43, Train_acc:99.4%, Train_loss:0.021, Test_acc:90.2%, Test_loss:0.403, Lr:1.00E-04
Epoch:44, Train_acc:98.0%, Train_loss:0.055, Test_acc:85.3%, Test_loss:0.686, Lr:1.00E-04
Epoch:45, Train_acc:98.0%, Train_loss:0.074, Test_acc:91.1%, Test_loss:0.321, Lr:1.00E-04
Epoch:46, Train_acc:98.6%, Train_loss:0.038, Test_acc:91.6%, Test_loss:0.426, Lr:1.00E-04
Epoch:47, Train_acc:97.4%, Train_loss:0.075, Test_acc:87.1%, Test_loss:0.604, Lr:1.00E-04
Epoch:48, Train_acc:99.6%, Train_loss:0.027, Test_acc:91.6%, Test_loss:0.379, Lr:1.00E-04
Epoch:49, Train_acc:99.8%, Train_loss:0.007, Test_acc:92.4%, Test_loss:0.381, Lr:1.00E-04
Epoch:50, Train_acc:100.0%, Train_loss:0.007, Test_acc:92.9%, Test_loss:0.361, Lr:1.00E-04
Epoch:51, Train_acc:99.8%, Train_loss:0.018, Test_acc:90.7%, Test_loss:0.446, Lr:1.00E-04
Epoch:52, Train_acc:99.0%, Train_loss:0.032, Test_acc:89.8%, Test_loss:0.588, Lr:1.00E-04
Epoch:53, Train_acc:97.7%, Train_loss:0.060, Test_acc:90.7%, Test_loss:0.456, Lr:1.00E-04
Epoch:54, Train_acc:97.7%, Train_loss:0.059, Test_acc:89.8%, Test_loss:0.506, Lr:1.00E-04
Epoch:55, Train_acc:98.6%, Train_loss:0.046, Test_acc:90.7%, Test_loss:0.350, Lr:1.00E-04
Epoch:56, Train_acc:99.7%, Train_loss:0.010, Test_acc:91.6%, Test_loss:0.349, Lr:1.00E-04
Epoch:57, Train_acc:99.6%, Train_loss:0.012, Test_acc:91.6%, Test_loss:0.369, Lr:1.00E-04
Epoch:58, Train_acc:98.9%, Train_loss:0.053, Test_acc:88.9%, Test_loss:0.666, Lr:1.00E-04
Epoch:59, Train_acc:98.2%, Train_loss:0.054, Test_acc:87.1%, Test_loss:0.509, Lr:1.00E-04
Epoch:60, Train_acc:98.7%, Train_loss:0.037, Test_acc:90.2%, Test_loss:0.513, Lr:1.00E-04
Done
5、结果显示和评估
1、结果显示
import matplotlib.pyplot as plt #隐藏警告和显示中文
import warnings
warnings.filterwarnings("ignore") #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 #分辨率x = range(epochs)
# 创建画板
plt.figure(figsize=(12, 3))
# 子图一
plt.subplot(1, 2, 1)
plt.plot(x, train_acc, label='Train Accurary')
plt.plot(x, test_acc, label='Test Accurary')
plt.legend(loc='lower right')
plt.title("Train and test Accurary")
# 子图二
plt.subplot(1, 2, 2)
plt.plot(x, train_loss, label='Train loss')
plt.plot(x, test_loss, label='Test loss')
plt.legend(loc='upper right')
plt.title("Train and test Loss")plt.show()
👀 解释:
- 总体效果还是不错的,损失率低于1,但是测试集的损失率有点小小不稳定;
- 准确率:刚开始出现了欠拟合的现象,但是后面好了,训练准确率稳定在100%附件(98%、99%等),测试集稳定在90%附件;
- 整体:yolov5这个用于目标检测的网络用语目标识别也是有不错的效果。
2、评估
best_model.load_state_dict(torch.load(PATH, map_location=device))
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)epoch_test_acc, epoch_test_loss
(0.9022222222222223, 0.5129974257313852)
- 准确率在0.9左右,效果良好,且损失率为0.5,低于1.0。
相关文章:

深度学习基础--将yolov5的backbone模块用于目标识别会出现怎么效果呢??
🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 前言 yolov5网络结构比较复杂,上次我们简要介绍了yolov5网络模块,并且复现了C3模块,深度学习基础–yolov5网络结构简介&a…...

操作系统(16)I/O软件
前言 操作系统I/O软件是负责管理和控制计算机系统与外围设备(例如键盘、鼠标、打印机、存储设备等)之间交互的软件。 一、I/O软件的定义与功能 定义:I/O软件,也称为输入/输出软件,是计算机系统中用于管理和控制设备与主…...

leetcode437.路径总和III
标签:前缀和 问题:给定一个二叉树的根节点 root ,和一个整数 targetSum ,求该二叉树里节点值之和等于 targetSum 的 路径 的数目。路径 不需要从根节点开始,也不需要在叶子节点结束,但是路径方向必须是向下…...
WebGPU、WebGL 和 OpenGL/Vulkan对比分析
WebGPU、WebGL 和 OpenGL/Vulkan 都是用于图形渲染和计算的图形API,但它们的设计理念、功能和适用场景有所不同。以下是它们的总结和对比分析: 1. WebGPU WebGPU 是一个新的、现代化的图形和计算API,设计目的是为Web平台提供更接近硬件的性…...
不可重入锁与死锁
不可重入锁确实可能导致死锁,特别是在同一线程尝试多次获取同一把锁时。如果锁是不可重入的,那么线程在第二次尝试获取锁时会永远阻塞,从而导致死锁。 不可重入锁与死锁的关系 不可重入锁不允许同一个线程多次获取同一把锁。在以下情况下&am…...

XXE-Lab靶场漏洞复现
1.尝试登录 输入账号admin/密码admin进行登录,并未有页面进行跳转 2.尝试抓包分析请求包数据 我们可以发现页面中存在xml请求,我们就可以构造我们的xml请求语句来获取想要的数据 3.构造语句 <?xml version"1.0" ?> <!DOCTYPE fo…...
从Windows到Linux:跨平台数据库备份与还原
数据库的备份与还原 目录 引言备份 2.1 备份所有数据库2.2 备份单个数据库2.3 备份多个指定数据库 传输备份文件还原 4.1 还原所有数据库4.2 还原单个数据库4.3 还原多个指定数据库 注意事项拓展 1. 引言 在不同的操作系统间进行数据库迁移时,命令行工具是我们的…...

upload-labs
Win平台靶场 靶场2 教程 教程 教程 pass-01 bash 本pass在客户端使用js对不合法图片进行检查!前端绕过, 禁用前端js代码, 或者上传图片, 抓包改后缀为 php , 后端没有校验 bash POST /Pass-01/index.php HTTP/1.1 Host: 47.122.3.214:8889 Content-Length: 49…...

【西门子PLC.博途】——面向对象编程及输入输出映射FC块
当我们做面向对象编程的时候,需要用到输入输出的映射。这样建立的变量就能够被复用,从而最大化利用了我们建立的udt对象。 下面就来讲讲映射是什么。 从本质上来说,映射就是拿实际物理对象对应程序虚拟对象,假设程序对象是I0.0&…...

牛客周赛 Round 72 题解
本次牛客最后一个线段树之前我也没碰到过,等后续复习到线段树再把那个题当例题发出来 小红的01串(一) 思路:正常模拟,从前往后遍历一遍去统计即可 #include<bits/stdc.h> using namespace std; #define int lo…...

Flux Tools 结构简析
Flux Tools 结构简析 BFL 这次一共发布了 Canny、Depth、Redux、Fill 四个 Tools 模型系列,分别对应我们熟悉的 ControlNets、Image Variation(IP Adapter)和 Inpainting 三种图片条件控制方法。虽然实现功能是相同的,但是其具体…...
0 前言
ArCS作为一个基于Rust的CAD(计算机辅助设计)开源系统,尽管已经有四年未更新,但其设计理念和技术实现仍然具有很高的学习和参考价值。以下是对ArCS项目的进一步分析和解读: 一、项目亮点与技术优势 高效与安全的Rust语…...

ARM嵌入式学习--第八天(PWM)
PWM -PWM介绍 PWM(pulse Width Modulation)简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在测量,通信,工控等方面 PWM的频率 是指在1秒钟内,信号从…...

遇到“REMOTE HOST IDENTIFICATION HAS CHANGED!”(远程主机识别已更改)的警告
连接虚拟机时提示报错: [insocoperhq-soc-cap-raw3 ~]$ ssh root10.99.141.104WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY! Someone could be eavesdropping on you right now (man-in-the-midd…...

vue3前端组件库的搭建与发布(一)
前言: 最近在做公司项目中,有这么一件事情,很是头疼,就是同一套代码,不同项目,要改相同bug,改好多遍,改的都想吐,于是就想做一个组件库,这样更新一下就全都可…...

COMSOL快捷键及内置函数
文章目录 COMSOL快捷键使用COMSOL算子求最大值和最小值COMSOL内置函数3.1 解析函数3.2 插值函数3.3 分段函数3.4 高斯脉冲函数3.5 斜坡函数3.6 矩形函数3.7 波形函数3.8 随机函数3.9 Matlab函数3.10 SWITCH函数 COMSOL快捷键 Ctrl+/ 可快速打开预定义的物理量列表。…...

HUAWEI-eNSP交换机链路聚合(手动负载分担模式)
配置思路:HUAWEI交换机链路聚合有LACP模式跟手动负载分担模式,本文主打手动负载分担模式:首先交换机-PC之间划分基本vlan,交换机-交换机之间创建链路聚合组,划分端口至链路聚合分组(缺省模式为手动负载分担模式)。结果验证要求同vlan可以ping通,关闭某个聚合端口后仍可…...

番外篇 | Hyper-YOLO:超图计算与YOLO架构相结合成为目标检测新的SOTA !
前言:Hello大家好,我是小哥谈。Hyper-YOLO,该方法融合了超图计算以捕捉视觉特征之间复杂的高阶关联。传统的YOLO模型虽然功能强大,但其颈部设计存在局限性,限制了跨层特征的融合以及高阶特征关系的利用。Hyper-YOLO在骨干和颈部的联合增强下,成为一个突破性的架构。在COC…...

【MATLAB第109期】基于MATLAB的带置信区间的RSA区域敏感性分析方法,无目标函数
【MATLAB第108期】基于MATLAB的带置信区间的RSA区域敏感性分析方法,无目标函数 参考第64期文章【MATLAB第64期】【保姆级教程】基于MATLAB的SOBOL全局敏感性分析模型运用(含无目标函数,考虑代理模型) 创新点: 1、采…...
Bootstrap 表格
Bootstrap 表格 引言 Bootstrap 是一个流行的前端框架,它提供了一套丰富的工具和组件,用于快速开发响应式和移动设备优先的网页。在本文中,我们将重点讨论 Bootstrap 中的表格组件,包括其基本结构、样式以及如何使用 Bootstrap …...

测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...

超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...
Admin.Net中的消息通信SignalR解释
定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享
文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的,根据Excel列的需求预估的工时直接打骨折,不要问我为什么,主要…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战
在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...
MySQL用户和授权
开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务: test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...

认识CMake并使用CMake构建自己的第一个项目
1.CMake的作用和优势 跨平台支持:CMake支持多种操作系统和编译器,使用同一份构建配置可以在不同的环境中使用 简化配置:通过CMakeLists.txt文件,用户可以定义项目结构、依赖项、编译选项等,无需手动编写复杂的构建脚本…...