ElasticSearch08-分析器详解
零、文章目录
ElasticSearch08-分析器详解
1、分析器原理
- Elasticsearch的分词器(Analyzer)是全文搜索的核心组件,它负责将文本转换为一系列单词(term/token)的过程,也叫分词。
(1)分析器的构成
- 字符过滤器(Character Filters):
- 接收原始文本字符流,可以通过添加、移除或改变字符来转变原始字符流。例如,可以将印度-阿拉伯数字转换为阿拉伯-拉丁数字,或从流中去除HTML元素等。
- 分词器(Tokenizer):
- 接收字符流,将其分解为单独的tokens(通常是单个单词),并输出tokens流。例如,
whitespace分词器在看到任何空格时将文本分解为tokens。它会将文本"Quick brown fox!"转换为多个terms[Quick, brown, fox!]。分词器还负责记录每个term的顺序或位置以及该term所代表的原始单词的开始和结束字符偏移量。
- 接收字符流,将其分解为单独的tokens(通常是单个单词),并输出tokens流。例如,
- Token过滤器(Token Filters):
- 接收令牌流,并且可以添加、删除或改变token。例如,
lowercasetoken过滤器将所有token转换为小写,stoptoken过滤器从token流中删除常用词(停用词),而synonymtoken过滤器将同义词引入token流中。Token过滤器不允许更改每个token的位置或字符偏移量。
- 接收令牌流,并且可以添加、删除或改变token。例如,
(2)分析器的工作流程
- 字符过滤器处理:文本首先通过字符过滤器,进行预处理,如去除HTML标签或格式转换。
- 分词器分词:经过预处理的文本进入分词器,分词器根据定义的规则(如空格、标点符号等)将文本拆分成单个词汇。
- Token过滤器处理:分词后的词汇通过一系列的Token过滤器,进行进一步的处理,如小写化、停用词过滤、同义词扩展等。
- 输出tokens:经过Token过滤器处理后的词汇成为最终的tokens,这些tokens将被用于构建倒排索引。
(3)分析器的重要性
- 分词器对于Elasticsearch的全文搜索至关重要,因为它直接影响到搜索的准确性和相关性。不同的语言和文本类型可能需要不同的分词器来最有效地处理文本。
- Elasticsearch提供了多种内置分词器,如
standard、simple、whitespace、stop等,以适应不同的应用场景。 - 用户也可以根据需要自定义分词器,以满足特定的分词需求。
2、常见内置分词器
| 分词器名称 | 描述 | 示例文本 | 分词结果示例 |
|---|---|---|---|
| Standard Tokenizer | 使用Unicode文本分割算法,去除标点符号,适用于大多数欧洲语言 | “Elasticsearch: Search & Analytics” | [“Elasticsearch”, “Search”, “Analytics”] |
| Whitespace Tokenizer | 以空白字符为分词符,包括空格和制表符 | “Elasticsearch, search & analytics” | [“Elasticsearch,”, “search”, “&”, “analytics”] |
| Lowercase Tokenizer | 类似Whitespace Tokenizer,但将所有tokens转换为小写 | “Elasticsearch, search & analytics” | [“elasticsearch,”, “search”, “&”, “analytics”] |
| Keyword Tokenizer | 不进行分词,将整个文本作为一个单独的token | “Elasticsearch: Search & Analytics” | [“Elasticsearch: Search & Analytics”] |
| Pattern Tokenizer | 使用正则表达式进行分词,默认为\W+(非单词字符) | “Elasticsearch: Search & Analytics” | [“Elasticsearch”, “Search”, “Analytics”] |
| N-Gram Tokenizer | 创建n-grams,连续的字符序列 | “elasticsearch”(2-gram) | [“el”, “le”, “ea”, “ar”, “rc”, “ch”, “ha”, “an”, “nt”, “ts”] |
| Edge N-Gram Tokenizer | 从单词的开始或结束部分生成n-grams | “elasticsearch”(1-gram,edge) | [“e”, “l”, “s”, “e”, “l”, “a”, “r”, “c”, “h”] |
3、分词器使用场景
(1)索引阶段(Indexing Phase)
- **文档索引:**当文档被索引到Elasticsearch时,分词器用于将文本字段(如标题、内容等)转换为一系列tokens(词项)。这些tokens被存储在倒排索引中,以便后续搜索。
- **分析器应用:**在索引过程中,指定的分析器(由分词器和token过滤器组成)会被应用到字段上,以确定如何将文本分割成tokens。
(2)查询阶段(Query Phase)
- **查询解析:**当执行搜索查询时,Elasticsearch会对查询文本应用与索引时相同的分析器,包括分词器。这意味着查询文本也会被转换成tokens。
- **查询处理:**查询的tokens与索引的倒排索引中的tokens进行匹配,以确定哪些文档包含这些tokens。
(3)相关性评分(Scoring Phase)
- **评分计算:**在查询过程中,Elasticsearch会根据tokens在文档中出现的次数和频率计算相关性评分。分词器的使用确保了查询tokens与索引tokens的一致性,从而使得评分准确。
(4)聚合(Aggregations)
- **术语聚合:**在执行基于术语的聚合(如terms聚合)时,分词器确保了聚合字段的tokens与查询tokens的一致性。
(5)高亮(Highlighting)
- **结果高亮:**在搜索结果中,Elasticsearch会使用与索引相同的分析器对查询文本进行分词,以便在文档中高亮显示匹配的tokens。
(6)建议(Suggestions)
- **自动完成和建议:**在自动完成或建议功能中,分词器用于处理用户输入的查询,以便与索引中的tokens匹配。
(7)同义词处理(Synonyms)
- **查询扩展:**在使用同义词时,分词器可以与同义词过滤器结合使用,以便在查询时扩展tokens,包括同义词。
4、使用分词器
(1)默认分词器
- Elasticsearch的默认分词器是
standard分词器。这个分词器适用于大多数西方语言,特别是英文,它基于Unicode文本分割算法(Unicode Text Segmentation)来分割文本,并去除大多数标点符号。standard分词器在处理文本时会将所有单词转换为小写,以便进行不区分大小写的匹配。 - 在创建新的索引时,如果不指定分词器,Elasticsearch会自动使用
standard分词器来处理文本字段。例如,如果你创建了一个名为my_index的索引,并且没有指定分析器,那么my_index中的text字段将默认使用standard分词器。 - 使用分词器进行分词,默认分词器无法解析中文词组,所以全部分词成单个字。
# 请求
Get _analyze
{"text":"测试分词器"
}# 返回
{"tokens" : [{"token" : "测","start_offset" : 0,"end_offset" : 1,"type" : "<IDEOGRAPHIC>","position" : 0},{"token" : "试","start_offset" : 1,"end_offset" : 2,"type" : "<IDEOGRAPHIC>","position" : 1},{"token" : "分","start_offset" : 2,"end_offset" : 3,"type" : "<IDEOGRAPHIC>","position" : 2},{"token" : "词","start_offset" : 3,"end_offset" : 4,"type" : "<IDEOGRAPHIC>","position" : 3},{"token" : "器","start_offset" : 4,"end_offset" : 5,"type" : "<IDEOGRAPHIC>","position" : 4}]
}
- 中文分词指定中文 ik 分词器
# 请求
Get _analyze
{"text":"测试分词器","analyzer": "ik_max_word"
}# 返回
{"tokens" : [{"token" : "测试","start_offset" : 0,"end_offset" : 2,"type" : "CN_WORD","position" : 0},{"token" : "分词器","start_offset" : 2,"end_offset" : 5,"type" : "CN_WORD","position" : 1},{"token" : "分词","start_offset" : 2,"end_offset" : 4,"type" : "CN_WORD","position" : 2},{"token" : "器","start_offset" : 4,"end_offset" : 5,"type" : "CN_CHAR","position" : 3}]
}
(2)创建索引并指定分析器
- 我们创建了一个名为
my_custom_analyzer的自定义分析器,它使用standard分词器,并且应用了lowercase和asciifolding过滤器。 - 我们将
text字段的分析器设置为定义的my_custom_analyzer。
# 请求
PUT /my_index
{"settings": {"analysis": {"analyzer": {"my_custom_analyzer": {"type": "custom","tokenizer": "standard","filter": ["lowercase", "asciifolding"]}}}},"mappings": {"properties": {"text": {"type": "text","analyzer": "my_custom_analyzer"}}}
}# 返回
{"acknowledged" : true,"shards_acknowledged" : true,"index" : "my_index"
}
(3)索引文档
text字段的值会被my_custom_analyzer处理,包括分词、小写化和ASCII折叠。
# 请求
POST /my_index/_doc
{"text": "Elasticsearch is a distributed search engine."
}# 返回
{"_index" : "my_index","_type" : "_doc","_id" : "mhUp05MBwu_sOZK4ykdt","_version" : 1,"result" : "created","_shards" : {"total" : 2,"successful" : 1,"failed" : 0},"_seq_no" : 0,"_primary_term" : 1
}
(4)执行搜索
- 在这个搜索查询中,我们指定了
my_custom_analyzer来处理查询字符串"Elasticsearch",确保查询时的分词和索引时的分词一致。
# 请求
GET /my_index/_search
{"query": {"match": {"text": {"query": "Elasticsearch","analyzer": "my_custom_analyzer"}}}
}# 返回
{"took" : 4,"timed_out" : false,"_shards" : {"total" : 1,"successful" : 1,"skipped" : 0,"failed" : 0},"hits" : {"total" : {"value" : 1,"relation" : "eq"},"max_score" : 0.2876821,"hits" : [{"_index" : "my_index","_type" : "_doc","_id" : "mhUp05MBwu_sOZK4ykdt","_score" : 0.2876821,"_source" : {"text" : "Elasticsearch is a distributed search engine."}}]}
}
(5)注意事项
- 分析器的选择对搜索结果有重要影响。正确的分析器可以帮助提高搜索的相关性和准确性。
- 自定义分析器可以根据具体需求组合不同的分词器和过滤器。
- 在创建索引后,分析器的设置不能更改,除非重新创建索引。
相关文章:
ElasticSearch08-分析器详解
零、文章目录 ElasticSearch08-分析器详解 1、分析器原理 Elasticsearch的分词器(Analyzer)是全文搜索的核心组件,它负责将文本转换为一系列单词(term/token)的过程,也叫分词。 (1ÿ…...
【IN、NOT、AND、OR】在 MySql 中的使用方法,使用场景、注意事项
目录 IN NOT AND OR 注意事项: 使用场景: IN 用于指定某个字段的值在一个预定义的列表中。 SELECT * FROM users WHERE age IN (20, 25, 30);查询返回 age 字段 是20、25 、30 的用户记录。 NOT 用于对条件进行否定。 查询将返回与指定 条件相…...
Face to face
1.西班牙添加5G volte 首先carrierconfig里使能 <boolean name"carrier_nr_available_bool" value"true" /> <boolean name"carrier_volte_available_bool" value"true" /> 其次 组件apn配置ims参数 2.印度j…...
宝塔配置python项目提示python版本与安装的不符
用宝塔的网站添加了项目,配置选择了python3.8,但是在终端并且进入了虚拟环境查看python的版本居然还是默认是2.7.5版本。 官方是举列说明,这张图是用python管理器生成的 而我用的 网站--python项目, 那么虚拟路径在 /www/serve…...
Restaurants WebAPI(一)—— clean architecture
文章目录 项目地址一、Restaurants.Domain 核心业务层1.1 Entities实体层1.2 Repositories 数据操作EF的接口二、Restaurants.Infrastructure 基础设施层2.1 Persistence 数据EF CORE配置2.2 Repositories 数据查询实现2.3 Extensions 服务注册三、Restaurants.Application用例…...
c++数据结构算法复习基础--13--基数算法
基数排序 - 桶排序 时间复杂度 O(n*d) – d为数据的长度 每次比较一位(个位、十位。。。),所以取值范围就为0-9。 根据该特点,设计桶的概念 – 0号桶、1号桶… 1、思想 1)找出最长的数字,确定要处理的…...
ntp设置
NTP(Network Time Protocol)简介 ntp授时定义 - NTP是一种用于在计算机网络中同步时间的协议。它确保网络中的各个设备(如服务器、客户端计算机、网络设备等)的时钟保持准确一致。 - 其工作原理是通过分层的时钟源体系ÿ…...
如何在Java中使用封装好的API接口?
1.选择合适的 HTTP 库 在 Java 中,可以使用多种库来进行 HTTP 请求。java.net.HttpURLConnection是 Java 标准库中的类,能够满足基本的 HTTP 请求需求,但使用起来相对复杂。另外,还有一些第三方库,如OkHttp和Apache H…...
AWS EKS 相关错误修复 - remote error: tls: internal error - CSR pending
现象 升级aws eks的kubernetes版本后执行kubectl logs 或者kubectl exec相关命令会出现报错 remote error: tls: internal error 执行kubectl get csr -A查看csr出现一直pending的状态,并且出现问题的pod都在新创建出来的eks node节点上 kubectl get csr -A NAME AGE …...
浏览器事件循环机制
JavaScript 是单线程运行的语言,同一时间只能执行一个任务。单线程意味着: 如果某个任务执行时间过长,后续任务会被阻塞。 同步任务和异步任务的调度需要一种机制来管理。 为了解决这个问题,事件循环应运而生,它可以…...
ubuntu22.04编译安装Opencv4.8.0+Opencv-contrib4.8.0教程
本章教程,主要记录在Ubuntu22.04版本系统上编译安装安装Opencv4.8.0+Opencv-contrib4.8.0的具体过程。 一、下载opencv和opencv-contrib包 wget https://github.com/opencv/opencv/archive/refs/tags/4.8.0.zip wget https://github.com/opencv/opencv_contrib/archive/refs/…...
概率论得学习和整理27:关于离散的数组 随机变量数组的均值,方差的求法3种公式,思考和细节。
目录 1 例子1:最典型的,最简单的数组的均值,方差的求法 2 例子1的问题:例子1只是1个特例,而不是普遍情况。 2.1 例子1各种默认假设,导致了求均值和方差的特殊性,特别简单。 2.2 我觉得 加权…...
【排序算法】——插入排序
目录 前言 简介 基本思想 1.直接插入排序 2.希尔排序 代码实现 1.直接插入排序 2.希尔排序 总结 1.时空复杂度 2.稳定性 尾声 前言 排序(Sorting) 是计算机程序设计中的一种重要操作,它的功能是将一个数据元素(或记录)的任意序列&…...
MySQL的并发控制与MVCC机制深度解析
目录 1. MySQL中的并发问题2. 数据库的隔离级别3. MVCC(多版本并发控制)机制3.1 MVCC的实现原理3.2 Read View详解3.3 当前读与快照读 4. MVCC在不同隔离级别下的工作方式5. MVCC解决幻读问题6. MVCC的优缺点优点:缺点: 7. MVCC在…...
Qt编译MySQL数据库驱动
目录 Qt编译MySQL数据库驱动 测试程序 Qt编译MySQL数据库驱动 (1)先找到MySQL安装路径以及Qt安装路径 C:\Program Files\MySQL\MySQL Server 8.0 D:\qt\5.12.12 (2)在D:\qt\5.12.12\Src\qtbase\src\plugins\sqldrivers\mysql下…...
uniapp地址类 方法
关于点击没反应 manifest.json 检查是否添加了对应的权限 /* 小程序特有相关 */"mp-weixin" : {"appid" : "wxc481f10754f1d9df","setting" : {"urlCheck" : false,"es6" : true,"postcss" : true,&qu…...
使用Idea自带的git功能进行分支合并
文章目录 1.背景描述2.分支切换3.分支合并的具体操作4.将在local环境下,从dev合并到qas分支上的代码,推送到远端 1.背景描述 目前在开发的当前项目有四个分支,master(主分支)、pre(预生产分支)、qas(测试分支)、dev(开发分支); …...
酷盾安全:Edge SCDN边缘安全内容分发网络
在当今数字化迅猛发展的时代,互联网内容分发的高效与安全成为了企业不可忽视的重要课题。为了满足这一需求,酷盾安全推出了创新的Edge Secure Content Delivery Network(Edge Scdn)解决方案,它不仅融合了分布式DDoS防护…...
H5 中 van-popup 的使用以及题目的切换
H5 中 van-popup 的使用以及题目的切换 在移动端开发中,弹窗组件是一个常见的需求。vant 是一个轻量、可靠的移动端 Vue 组件库,其中的 van-popup 组件可以方便地实现弹窗效果。本文将介绍如何使用 van-popup 实现题目详情的弹窗展示,并实现…...
Liinux下VMware Workstation Pro的安装,建议安装最新版本17.61
建议安装最新版本17.61,否则可能有兼容性问题 下载VMware Workstation安装软件 从官网网站下载 https://support.broadcom.com/group/ecx/productdownloads?subfamilyVMwareWorkstationPro 选择所需版本 现在最新版本是17.61,否则可能有兼容性问题…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...
【Linux】shell脚本忽略错误继续执行
在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...
RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...
简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...
剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...
【C语言练习】080. 使用C语言实现简单的数据库操作
080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...
智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
