ElasticSearch 数据聚合与运算
1、数据聚合
聚合(aggregations)可以让我们极其方便的实现数据的统计、分析和运算。实现这些统计功能的比数据库的 SQL 要方便的多,而且查询速度非常快,可以实现近实时搜索效果。
注意: 参加聚合的字段必须是 keyword、日期、数值和布尔类型
1.1 聚合的种类
常见的聚合类型:
1.1.1 桶聚合(Bucket):对文档分组,类似 MySQL的 group by 功能
| 类型 | 描述 |
|---|---|
| TermAggregation | 按照文档字段值分组,如:品牌分组 |
| Date Histogram | 按照日期阶梯分组,如:按月分组 |
1.1.2 度量聚合(Metric):值计算,如:最大值、最小值、平均值等等
| 类型 | 描述 |
|---|---|
| Avg | 求平均值 |
| Max | 求最大值 |
| Min | 求最小值 |
| Stats | 同时求max、min、avg、sum等 |
1.1.3 管道聚合(pipeline): 对已聚合的结果为基础做聚合
1.2 聚合示例测试1
需求:从所有酒店数据中,查询酒店金额不大于300的所有酒店品牌的种类,并按照品牌的数量进行逆序排序,筛选出前5个数量最多的品牌。
分析:① 限制酒店金额 ② 根据酒店的品牌做聚合(Bucket)查询 ③ 逆序排序
1.2.1 定义 DSL 语法
GET /hotel/_search
{"query": {"range": {"price": {"lte": 300}}},"size": 0,"aggs": {"brandAggs": {"terms": {"field": "brand","size": 5,"order": {"_count": "desc"}}}}
}
1.2.2 参数说明
- size: 设置为0,结果中不需要包含文档,只返回聚合结果
- aggs:定义聚合,固定值
- brandAgg:聚合名称,自定义语义化即可
- terms: 聚合类型,brand 是一个 keyword 类型的字符串,所以用 terms
- field:参与聚合的字段
- size:希望获取的聚合结果数量
- order:指定排序,按照 _count 逆序排序
- brandAgg:聚合名称,自定义语义化即可
1.2.3 测试结果

1.3 聚合示例测试2
需求: 对酒店的品牌分组,并计算每个品牌的用户评分的最大值、最小值和平均值等,并按照酒店评分的平均值逆序排序
分析:① 对品牌进行桶(Bucket)聚合 ② 对桶聚合的结果进行(Metric)聚合运算
1.3.1 定义 DSL 语法
GET /hotel/_search
{"size": 0,"aggs": {"brandAgg": {"terms": {"field": "brand","size": 10,"order": {"scoreAgg.avg": "desc"}},"aggs": {"scoreAgg": {"stats": {"field": "score"}}}}}
}
1.3.2 参数说明
- size: 设置为0,结果中不需要包含文档,只返回聚合结果
- aggs:定义聚合,固定值
- brandAgg:聚合名称,自定义语义化即可
- terms: 聚合类型,brand 是一个 keyword 类型的字符串,所以用 terms
- field:参与聚合的字段
- size:希望获取的聚合结果数量
- order:指定排序,这里按照 “scoreAgg.avg” 逆序排序
- terms: 聚合类型,brand 是一个 keyword 类型的字符串,所以用 terms
- aggs:对 brandAggs 的子聚合,也就是说多聚合后的结果分别计算,固定值
- scoreAgg:聚合名称,自定义语义化即可
- stats:Metric 聚合计算,这里的 stats 可以计算 min、max、avg、sum的值
- field:聚合字段
- scoreAgg:聚合名称,自定义语义化即可
- brandAgg:聚合名称,自定义语义化即可
1.3.3 测试结果

1.4 聚合示例测试3
需求:对酒店的品牌分组,累加品牌评分,按累计评分逆序排序,筛选出前5名,计算每个品牌评分占总评分的比率
分析:① 对品牌进行桶(Bucket)聚合 ② 对桶聚合的结果进行(Metric)聚合运算 ③ 聚合计算(Pipeline)④ 逻辑运算
1.4.1 定义 DSL 语法
GET /hotel/_search
{"size": 0,"aggs": {"brandAgg": {"terms": {"field": "brand","size": 5,"order": {"singleBrandTotalScore": "desc"}},"aggs": {"singleBrandTotalScore": {"sum": {"field": "score"}}}},"allBrandTotalScore": {"sum_bucket": {"buckets_path": "brandAgg>singleBrandTotalScore"}}}
}
1.4.2 参数说明
- size: 设置为0,结果中不需要包含文档,只返回聚合结果
- aggs:定义聚合,固定值
-
brandAgg:聚合名称,自定义语义化即可
- terms: 聚合类型,brand 是一个 keyword 类型的字符串,所以用 terms
- field:参与聚合的字段
- size:希望获取的聚合结果数量
- order:指定排序,这里按照 “singleBrandTotalScore.value” 逆序排序,sum 聚合运算 value 可省略
- terms: 聚合类型,brand 是一个 keyword 类型的字符串,所以用 terms
-
aggs:对 brandAggs 的子聚合,也就是说多聚合后的结果分别计算,固定值
- singleBrandTotalScore: 多单一品牌的所有评分进行累加
- sum: 对 score 字段求和
- singleBrandTotalScore: 多单一品牌的所有评分进行累加
-
allBrandTotalScore:聚合名称,自定义语义化即可,每个品牌的得分总和再次求和,以获得所有品牌的总得分
- sum_bucket: 管道聚合
- buckets_path:指定了数据来源路径,即来自brandAgg聚合中 singleBrandTotalScore 的结果
- sum_bucket: 管道聚合
-
1.4.3 测试结果

1.4.4 说明:是否可以直接将 allBrandTotalScore 计算值,传入 aggs 中直接参与计算还有待探索,若有好的方法,希望留言反馈,感谢!!!

相关文章:
ElasticSearch 数据聚合与运算
1、数据聚合 聚合(aggregations)可以让我们极其方便的实现数据的统计、分析和运算。实现这些统计功能的比数据库的 SQL 要方便的多,而且查询速度非常快,可以实现近实时搜索效果。 注意: 参加聚合的字段必须是 keywor…...
科研学习|论文解读——智能体最新研究进展
从2024-12-13到2024-12-18的45篇文章中精选出5篇优秀的工作分享 Can Modern LLMs Act as Agent Cores in Radiology~Environments? Achieving Collective Welfare in Multi-Agent Reinforcement Learning via Suggestion Sharing A systematic review of norm emergence in …...
面试小札:Java后端闪电五连鞭_8
1. Kafka消息模型及其组成部分 - 消息(Message):是Kafka中最基本的数据单元。消息包含一个键(key)、一个值(value)和一个时间戳(timestamp)。键可以用于对消息进行分区等…...
java error(2)保存时间带时分秒,回显时分秒变成00:00:00
超简单,顺带记录一下 1.入参实体类上使用注释:JsonFormat(pattern “yyyy-MM-dd”) 导致舍弃了 时分秒的部分。 2.数据库字段对应的类型是 date。date就是日期,日期就不带时分秒。 3.返参实体类使用了JsonFormat(pattern “yyyy-MM-dd”) 导…...
计算机毕业设计python+spark+hive动漫推荐系统 漫画推荐系统 漫画分析可视化大屏 漫画爬虫 漫画推荐系统 漫画爬虫 知识图谱 大数据毕设
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…...
数字IC后端设计实现篇之TSMC 12nm TCD cell(Dummy TCD Cell)应该怎么加?
TSMC 12nm A72项目我们需要按照foundary的要求提前在floorplan阶段加好TCD Cell。这个cell是用来做工艺校准的。这个dummy TCD Cell也可以等后续Calibre 插dummy自动插。但咱们项目要求提前在floorplan阶段就先预先规划好位置。 TSCM12nm 1P9M的metal stack结构图如下图所示。…...
(8)YOLOv6算法基本原理
一、YOLOv6 模型原理 发布日期:2022年6月 作者:美团技术团队 骨干网络:参考了 RepVGG 的设计,将重参数化能力进行补强,增强了模型结构的重参数化能力。使用了深度可分离卷积和跨阶段连接等技术,旨在提升…...
LNMP+discuz论坛
0.准备 文章目录 0.准备1.nginx2.mysql2.1 mysql82.2 mysql5.7 3.php4.测试php访问mysql5.部署 Discuz6.其他 yum源: # 没有wget,用这个 # curl -o /etc/yum.repos.d/CentOS-Base.repo https://mirrors.aliyun.com/repo/Centos-7.repo[rootlocalhost ~]#…...
在linux系统的docker中安装GitLab
一、安装GitLab: 在安装了docker之后就是下载安装GitLab了,在linux系统中输入命令:docker search gitlab就可以看到很多项目,一般安装第一个,它是英文版的,如果英文不好可以安装twang2218/gitlab-ce-zh。 …...
Python面试常见问题及答案12
问题: 请解释Python中的GIL(全局解释器锁)是什么? ○ 答案: GIL是Python解释器中的一种机制,用于确保任何时候只有一个线程在执行Python字节码。这在多线程场景下可能影响性能优化,但对于单线程…...
从0-1开发一个Vue3前端系统页面-9.博客页面布局
本节主要实现了博客首页界面的基本布局并完善了响应式布局,因为完善了响应式布局故对前面的页面布局有所改动,这里会将改动后的源码同步上传。 1.对页面头部的用户信息进行设计和美化 布局设计参考 :通常初级前端的布局会通过多个div划分区域…...
[手机Linux] 六,ubuntu18.04私有网盘(NextCloud)安装
一,LNMP介绍 LNMP一键安装包是一个用Linux Shell编写的可以为CentOS/RHEL/Fedora/Debian/Ubuntu/Raspbian/Deepin/Alibaba/Amazon/Mint/Oracle/Rocky/Alma/Kali/UOS/银河麒麟/openEuler/Anolis OS Linux VPS或独立主机安装LNMP(Nginx/MySQL/PHP)、LNMPA(Nginx/MySQ…...
白话java设计模式
创建模式 单例模式(Singleton Pattern): 就是一次创建多次使用,它的对象不会重复创建,可以全局来共享状态。 工厂模式(Factory Method Pattern): 可以通过接口来进行实例化创建&a…...
助力 Tuanjie OpenHarmony 开发:如何使用工具包 Hilog 和 SDK Kits Package?
随着团结引擎从 1.0.0 迭代至 1.3.0,越来越多的开发者开始使用团结引擎开发 OpenHarmony 应用。 在开发的过程中,我们也收到了大量反馈,尤其是在日志、堆栈和性能数据方面,这些信息对开发和调试过程至关重要。同时,我…...
NSDT 3DConvert:高效实现大模型文件在线预览与转换
NSDT 3DConvert 作为一个 WebGL 展示平台,能够实现多种模型格式免费在线预览,并支持大于1GB的OBJ、STL、GLTF、点云等模型进行在线查看与交互,这在3D模型展示领域是一个相当强大的功能。 平台特点 多格式支持 NSDT 3DConvert兼容多种3D模型…...
电商数据采集电商,行业数据分析,平台数据获取|稳定的API接口数据
电商数据采集可以通过多种方式完成,其中包括人工采集、使用电商平台提供的API接口、以及利用爬虫技术等自动化工具。以下是一些常用的电商数据采集方法: 人工采集:人工采集主要是通过基本的“复制粘贴”的方式在电商平台上进行数据的收集&am…...
VUE+Node.js+mysq实现响应式个人博客|项目初始化+路由配置+基础组件搭建
Day 1 开发文档:项目初始化与基础架构搭建 一、项目初始化 1. 创建项目 首先,我们使用 Vite 创建一个基于 Vue 3 的项目: # 创建项目 npm create vitelatest my-blog -- --template vue # 这条命令会创建一个名为 my-blog 的新项目&#…...
Python如何正确解决reCaptcha验证码(9)
前言 本文是该专栏的第73篇,后面会持续分享python爬虫干货知识,记得关注。 我们在处理某些国内外平台项目的时候,相信很多同学或多或少都见过,如下图所示的reCaptcha验证码。 而本文,笔者将重点来介绍在实战项目中,遇到上述中的“reCaptcha验证码”,如何正确去处理并解…...
web3跨链预言机协议-BandProtocol
项目简介 Band Protocol 项目最初于 2017年成立并建立在 ETH 之上。后于2020年转移到了 Cosmos 网络上,基于 Cosmos SDK 搭建了一条 Band Chain 。这是一条 oracle-specific chain,主要功能是提供跨链预言机服务。Cosmos生态上第一个,也是目…...
JAVA将集合切分成指定份数(简易)
JAVA将集合切分成指定份数 主要方法 /** * 主要方法* param list 切分的集合* param count 切成的份数* return*/ public static List<List> splitList(List list,int count){if(count <0 ){return Lists.newArrayList();}List<List> result Lists.newArrayL…...
剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...
cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...
Typeerror: cannot read properties of undefined (reading ‘XXX‘)
最近需要在离线机器上运行软件,所以得把软件用docker打包起来,大部分功能都没问题,出了一个奇怪的事情。同样的代码,在本机上用vscode可以运行起来,但是打包之后在docker里出现了问题。使用的是dialog组件,…...
使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度
文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...
C++使用 new 来创建动态数组
问题: 不能使用变量定义数组大小 原因: 这是因为数组在内存中是连续存储的,编译器需要在编译阶段就确定数组的大小,以便正确地分配内存空间。如果允许使用变量来定义数组的大小,那么编译器就无法在编译时确定数组的大…...
Java + Spring Boot + Mybatis 实现批量插入
在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法:使用 MyBatis 的 <foreach> 标签和批处理模式(ExecutorType.BATCH)。 方法一:使用 XML 的 <foreach> 标签ÿ…...
【Go语言基础【12】】指针:声明、取地址、解引用
文章目录 零、概述:指针 vs. 引用(类比其他语言)一、指针基础概念二、指针声明与初始化三、指针操作符1. &:取地址(拿到内存地址)2. *:解引用(拿到值) 四、空指针&am…...
打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用
一、方案背景 在现代生产与生活场景中,如工厂高危作业区、医院手术室、公共场景等,人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式,存在效率低、覆盖面不足、判断主观性强等问题,难以满足对人员打手机行为精…...
