路径规划之启发式算法之二十:麻雀搜索算法(Sparrow Search Algorithm,SSA)
麻雀搜索算法(Sparrow Search Algorithm,SSA)是一种受麻雀觅食和反捕食行为启发的新型的群智能优化算法,它模拟了麻雀种群的觅食行为和反捕食行为的生物学群体特征。该算法由薛建凯在2020年首次提出,旨在解决全局优化问题,具有求解精度高、效率高等特点。
一、算法原理
SSA中的麻雀群体分为发现者(Discoverers)和乞讨者(Beggars)两类。发现者负责寻找新的食物源(即搜索空间中的新解),通常是群体中适应度最好的个体,它们引导群体向潜在的优质解决方案移动。乞讨者则跟随发现者,通过模仿其行为来寻找食物。
(1)发现者:占总种群的10-20%,负责搜索新的解空间,具有更高的搜索能力和更广泛的搜索范围。
(2)乞讨者:占总种群的80-90%,通过模仿发现者的行为来寻找食物,具有较低的搜索能力和更有限的搜索范围。
二、算法步骤
(1)初始化:设定麻雀种群规模、搜索空间范围、最大迭代次数等参数。随机生成初始麻雀种群,并计算每个个体的适应度值。
假设种群中共有只麻雀,每只麻雀在解空间中的位置表示为
,其中
是问题的维度,
和
分别代表搜索空间的下界和上界。

(2)种群划分:根据适应度值将麻雀种群划分为发现者和跟随者。发现者占种群的一定比例,剩余个体为跟随者。
(3)发现者更新:发现者根据当前位置、迭代次数和随机因子更新自身位置。更新公式考虑了麻雀的觅食行为和探索能力。
当安全值小于预警值
时,麻雀进行全局搜索觅食;当
时,麻雀以正态分布进行随机游走。

(4)跟随者更新:跟随者根据发现者的位置和自身状态更新位置。部分跟随者可能因饥饿而飞往其他区域觅食,增加种群多样性。
追随者位置更新考虑了与全局最优位置的距离以及随机因素。

(5)危险预警与位置调整:当麻雀种群感知到危险时,触发危险预警机制。麻雀个体根据预警信号调整位置,以躲避捕食者。
(6)适应度评估与身份转换:计算每个个体的新适应度值。根据适应度值的变化,允许发现者和跟随者之间转换身份。
(7)迭代与终止:重复上述步骤,直到达到最大迭代次数或满足其他停止条件。输出全局最优解或最优个体位置。

图1 麻雀搜索算法流程图
三、算法关键参数
(1)群体大小(N):群体大小影响算法的搜索能力和多样性。较大的群体可以提供更广泛的搜索范围,但计算成本更高。一般建议群体大小在50-100之间。
(2)迭代次数(Max_iter):迭代次数决定了算法搜索的深度。更多的迭代次数有助于找到更优解,但会增加计算时间。建议迭代次数在500-1000之间。
(3)邻域大小:邻域大小影响个体在解空间中的搜索范围。较大的邻域可以增加搜索的广度,但也可能降低搜索的精度。建议邻域大小在0.1-0.2之间。
(3)交叉率和变异率:这两个参数控制种群中个体的遗传多样性。交叉率和变异率通常设置在0.5左右,以保持搜索能力和多样性。
(4)惯性权重:惯性权重控制个体在搜索空间中的移动速度。较大的惯性权重可以加快搜索速度,但也可能导致算法过早收敛。建议惯性权重在0.5-0.9之间。
(5)随机因子:随机因子增加搜索过程中的随机性,有助于算法跳出局部最优。建议随机因子在0.1-0.2之间。
(6)警戒者比例(N_Vigilant):警戒者负责监测环境并预警潜在威胁,其比例影响算法对环境变化的响应能力。适当增加警戒者比例可以提高算法的适应性。
(7)发现者和追随者比例(N_discoverer和N_Followers):发现者负责探索新的食物源,追随者则利用这些信息。调整这些比例可以平衡探索和利用,影响算法的收敛速度和解的质量。
(8)安全阈值(ST):安全阈值影响警戒者的行为,进而影响整个种群的动态。适当调整安全阈值可以控制算法的搜索策略,平衡全局搜索和局部搜索。
通过调
相关文章:
路径规划之启发式算法之二十:麻雀搜索算法(Sparrow Search Algorithm,SSA)
麻雀搜索算法(Sparrow Search Algorithm,SSA)是一种受麻雀觅食和反捕食行为启发的新型的群智能优化算法,它模拟了麻雀种群的觅食行为和反捕食行为的生物学群体特征。该算法由薛建凯在2020年首次提出,旨在解决全局优化问题,具有求解精度高、效率高等特点。 一、算法原理 S…...
音频开发中常见的知识体系
在 Linux 系统中,/dev/snd 目录包含与声音设备相关的文件。每个文件代表系统中的一部分音频硬件或音频控制接口。以下是你列出的文件及其含义: 一.基本术语 样本长度(sample):样本是记录音频数据最基本的单位,计算机对每个通道采…...
【返璞归真】score检验:似然比的得分检验(Likelihood Ratio Score Test)
Score检验(Score Test)是一种用于假设检验的方法,特别是在统计建模中,常用于估计模型参数时检验某个假设是否成立。它的全名是“似然比的得分检验”(Likelihood Ratio Score Test),通常用于大样…...
三维重建(六)——3D Representation Methods: A Survey(北大总结三维表征--2024.10出版)
文章目录 一、摘要二、引言2.1 研究焦点和发展历程三、3D表征3.1 体素网格3.2 点云3.3 网格3.4 符号距离函数(SDF)3.5 神经辐射场(NeRF)3.6 三维高斯溅射(3D Gaussian Splatting, 3DGS)3.7 混合方法3.7.1 深度步进四面体(Deep Marching Tetrahedra, DMTet)3.7.2 三平面…...
html基础-认识html
1.什么是html html是浏览器可以识别的的标记语言,我们在浏览器浏览的网页就是一个个的html文档 <!DOCTYPE html> <html> <head> <meta charset"utf-8"> <title>认识html</title> </head> <body><h1…...
UE5 跟踪能力的简单小怪
A、思路 1、用素材的骨骼网格体创建小怪BP,绑定新的小怪控制器。 2、控制器的事件开始时,获取玩家状态,指定AI小怪自动向玩家移动。 复杂的AI需要用强大功能如黑板、行为树。 而简单的AI则可以用简单方法实现,杀鸡不用牛刀。视…...
Ubantu22系统安装Miniconda3
1、Anaconda和Miniconda异同 清华源镜像的Miniconda3和Anaconda都是用于管理Python环境和软件包的工具,但它们之间存在一些关键的不同之处。下面将分别介绍它们的特点以及使用清华源镜像的差异。 相同点: (1)功能相似:…...
130、java中在使用new ArrayList<>(),在参数中传入一个集合的作用
在Java中,当你使用new ArrayList<>()时,你正在创建一个新的ArrayList实例。如果你在其后跟一对尖括号,并在内部传入一个集合,那么这实际上是一个"初始容量"的概念。 例如,如果你有一个集合otherList&…...
Mybatis-plus-Join--分页查询
数据表四张: user: id,username,create_time,update_time product: id,name,price,number(库存),create_time,update_times order: id,quantity,order_time(下单时间),update_time order_detail:id,product_id,order_id,quant…...
对BG兼并点的理解-不断刷新版
常想常新,每次接触都有新理解,不确定想的是否正确,拿出来讨论,以最新结论为准 2024-9-19 1、仿真简并点时需要断开启动电路:启动电路会干扰DC结果的计算,可能看到加启动电路后简并点减少,但在…...
python的游标是什么
CURSOR(私有SQL 区)就是一个句柄,即指针或引用,指向sql私有区(一个用户的能打开的cursor数由参数open_cursors决定)【确切说,指向sql私有区里的固定部分(The persistentarea…...
硬件---14---PCB学习:PCB封装库及布局操作
一PCB封装元素的组成与介绍 二实例-贴片0603封装的创建 1封装命名 找不到封装库创建页面,可以配合右下角的Panels去找。 找到0603电阻或者电容的PCB封装,根据提供尺寸去设计PCB的封装。 <1>双击PCB器件封装 <2>命名 2放置焊盘ÿ…...
什么是MyBatis
MyBatis 简介 MyBatis 是一个流行的 Java 持久层框架(Persistence Framework),它主要用于简化数据库操作,提供了对数据库的映射支持,使得开发人员能够通过简单的配置和映射文件来执行数据库操作(如增、删、…...
开发技术-Java改变图片格式
图片上传页未做控制,导致上传的是GIF格式,导致图片识别失败。需要将GIF格式转为JPEG格式。 代码,是找AI写的,记录一下: import java.awt.image.BufferedImage; import java.io.File; import java.io.IOException; im…...
基于DockerCompose搭建Redis主从哨兵模式
linux目录结构 内网配置 哨兵配置文件如下,创建3个哨兵配置文件 # sentinel26379.conf sentinel26380.conf sentinel26381.conf 内容如下 protected-mode no sentinel monitor mymaster redis-master 6379 2 sentinel down-after-milliseconds mymaster 60000 s…...
aioice里面candidate固定UDP端口测试
环境: aioice0.9.0 问题描述: aioice里面candidate固定UDP端口测试 解决方案: /miniconda3/envs/nerfstream/lib/python3.10/site-packages/aioice import hashlib import ipaddress import random from typing import Optional import…...
Git使用教程-分支使用/合并分支提交
Git使用教程-分支使用 文章目录 Git使用教程-分支使用一、分支(branch)的基本操作:二、查看分支:参考 一、分支(branch)的基本操作: git clone https://.git git status …...
单元测试使用记录
什么是单元测试 简单来说就是对一个类中的方法进行测试,对输出的结果检查判断是否符合预期结果 但是在多年的工作中,从来没有哪个项目中真正系统的用到了单元测试,因此对它还是很陌生的,也就造成更加不会在项目中区使用它。 如何…...
LabVIEW实时信号采集与频谱分析
系统通过LabVIEW与PXIe硬件结合,实现高精度模拟信号的实时采集、频谱分析与可视化显示。核心功能包括采样率配置、快速傅里叶变换(FFT)、功率谱图生成及动态缩放调整,同时支持信号平均与噪声抑制。系统设计灵活,适用于…...
OpenCV(python)从入门到精通——运算操作
加法减法操作 import cv2 as cv import numpy as npx np.uint8([250]) y np.uint8([10])x_1 np.uint8([10]) y_1 np.uint8([20])# 加法,相加最大只能为255 print(cv.add(x,y))# 减法,相互减最小值只能为0 print(cv.subtract(x_1,y_1))图像加法 import cv2 as…...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...
【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
376. Wiggle Subsequence
376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...
ServerTrust 并非唯一
NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...
2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...
OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...
HubSpot推出与ChatGPT的深度集成引发兴奋与担忧
上周三,HubSpot宣布已构建与ChatGPT的深度集成,这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋,但同时也存在一些关于数据安全的担忧。 许多网络声音声称,这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...
