当前位置: 首页 > news >正文

Google guava 最佳实践 学习指南之08 `BiMap`(双向映射)

guava 最佳实践 学习指南

Google Guava 库中的 BiMap(双向映射)是一种特殊的映射类型,它维护了映射的反向视图,并确保不存在重复值,且始终可以安全地使用值获取对应的键。以下是关于 Guava BiMap 的一些介绍和用法:

1. 概述

BiMap(或称为“双向映射”)是一种特殊的映射类型,它允许通过键查找值,同时也可以通过值查找键。这意味着在 BiMap 中,不仅键是唯一的,值也必须是唯一的。BiMap 接口扩展了 Map 接口,并添加了一些方法来提供反向视图。

2. BiMap 的实现类

Guava 提供了几种 BiMap 的实现:

  • HashBiMap:基于哈希表的双向映射实现。它提供了常数时间的 containsKeygetput 操作(假设哈希函数是完美的)。由于其基于哈希表,它不保证元素的顺序。
  • EnumBiMap:一种特殊的 BiMap,它要求键和值都是枚举类型。这种实现类型安全和高效,适用于键和值都是已知枚举值的情况。
  • ImmutableBiMap:不可修改的 BiMap,遵循构建器模式。

3. BiMap 的常用方法

除了继承自 Map 接口的方法外,BiMap 还添加了一些特有的方法:

  • inverse():返回一个视图,其中的键和值与原 BiMap 中的值和键相反。注意,返回的是视图,对返回映射的更改将反映在原映射上,反之亦然。
  • forcePut(K key, V value):类似于 put 方法,但如果键或值已经存在,则会抛出 IllegalArgumentException
  • containsValue(Object value):检查 BiMap 中是否包含指定的值。

4. BiMap 的用法示例

以下是一个简单的示例,展示如何使用 Guava 的 HashBiMap 实现 BiMap 接口,并演示了它的多种方法:

import com.google.common.collect.BiMap;
import com.google.common.collect.HashBiMap;public class BiMapExample {public static void main(String[] args) {// 创建一个空的HashBiMapBiMap<String, Integer> biMap = HashBiMap.create();// 向BiMap中添加元素biMap.put("One", 1);biMap.put("Two", 2);biMap.put("Three", 3);// 使用get方法通过键获取值System.out.println("Two maps to: " + biMap.get("Two")); // 输出: Two maps to: 2// 使用get方法通过值获取键(使用inverse()方法)System.out.println("2 maps to: " + biMap.inverse().get(2)); // 输出: 2 maps to: Two// 检查BiMap中是否包含某个键System.out.println("Does the map contain key 'One'? " + biMap.containsKey("One")); // 输出: Does the map contain key 'One'? true// 检查BiMap中是否包含某个值System.out.println("Does the map contain value 2? " + biMap.containsValue(2)); // 输出: Does the map contain value 2? true}
}

这个示例展示了如何创建 BiMap,添加元素,以及如何通过键和值进行查询。

相关文章:

Google guava 最佳实践 学习指南之08 `BiMap`(双向映射)

guava 最佳实践 学习指南 Google Guava 库中的 BiMap&#xff08;双向映射&#xff09;是一种特殊的映射类型&#xff0c;它维护了映射的反向视图&#xff0c;并确保不存在重复值&#xff0c;且始终可以安全地使用值获取对应的键。以下是关于 Guava BiMap 的一些介绍和用法&am…...

【设计模式】空接口

&#xff08;空&#xff09;接口的用法总结 接口用于定义某个类的特定能力或特性。在工作流或任务管理系统中&#xff0c;接口可以帮助标识哪些任务可以在特定阶段执行。通过实现这些接口&#xff0c;任务类可以被标识为在相应的阶段可以执行&#xff0c;从而在验证和执行逻辑…...

Grad-CAM-解释CNN决策过程的可视化技术

Grad-CAM&#xff08;Gradient-weighted Class Activation Mapping&#xff09;是一种用于解释卷积神经网络&#xff08;CNN&#xff09;决策过程的可视化技术。其核心思想是通过计算分类分数相对于网络确定的卷积特征的梯度&#xff0c;来识别图像中哪些部分对分类结果最为重要…...

前后端学习中本周遇到的内容

一、RequiresPermissions注解 例如&#xff1a; RequiresPermissions("demo:staff:save") void saveStaff(); 权限控制&#xff0c;要求含有demo:staff:save的权限才能执行方法saveStaff()。 二、遇到的细节问题 在进行增删改查时&#xff0c;发送http请求时&…...

基于海思soc的智能产品开发(巧用mcu芯片)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 对于开发车规级嵌入式软件的同学来说&#xff0c;socmcu这样的组合&#xff0c;他们并不陌生。但是传统的工业领域&#xff0c;比如发动机、医疗或…...

批量DWG文件转dxf(CAD图转dxf)——c#插件实现

此插件可将指定文件夹及子文件夹下的dwg文件批量转为dxf文件。 &#xff08;使用方法&#xff1a;命令行输入 “netload” 加载插件&#xff0c;然后输入“dwg2dxf”运行&#xff0c;选择文件夹即可。&#xff09; 生成dxf在此新建的文件夹路径下&#xff0c;包含子文件夹内的…...

flask flask-socketio创建一个网页聊天应用

应用所需环境&#xff1a; python 3.11.11 其他 只需要通过这个命令即可 pip install flask3.1.0 Flask-SocketIO5.4.1 -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple 最好是用conda创建一个新的虚拟环境来验证 完整的pip list如下 Package Version ----…...

使用CNN模型训练图片识别(键盘,椅子,眼镜,水杯,鼠标)

首先是环境&#xff1a; 我是在Anaconda3中的Jupyter Notebook (tensorflow)中进行训练&#xff0c;环境各位自行安装 数据集&#xff1a; 本次数据集五个类型&#xff08;键盘&#xff0c;椅子&#xff0c;眼镜&#xff0c;水杯&#xff0c;鼠标&#xff09;我收集了每个接近两…...

Gitlab 数据备份全攻略:命令、方法与注意事项

文章目录 1、备份命令2、备份目录名称说明3、手工备份配置文件3.1 备份配置文件3.2 备份ssh文件 4、备份注意事项4.1 停止puma和sicdekiq组件4.2 copy策略需要更多磁盘空间 5、数据备份方法5.1 docker命令备份5.2 kubectl命令备份5.3 参数说明5.4、选择性备份5.5、非tar备份5.6…...

Vue|scoped样式

在 Vue.js 中&#xff0c;scoped 是一个非常有用的特性&#xff0c;允许你将样式限制在当前组件的作用域内&#xff0c;避免样式泄漏到其他组件。它是通过 Vue 的单文件组件&#xff08;.vue 文件&#xff09;中的 <style> 标签实现的。 目录 案例演示创建多个vue文件如何…...

eBPF试一下(TODO)

eBPF程序跟踪linux内核软中断 eBPF (Extended Berkeley Packet Filter) 是一种强大的 Linux 内核技术&#xff0c;最初用于网络数据包过滤&#xff0c;但现在它已经扩展到了多个领域&#xff0c;如性能监控、安全性、跟踪等。eBPF 允许用户在内核中执行代码&#xff08;以一种安…...

【数据安全】如何保证其安全

数据安全风险 数字经济时代&#xff0c;数据已成为重要的生产要素。智慧城市、智慧政务的建设&#xff0c;正以数据为核心&#xff0c;推动城市管理的智能化和公共服务的优化。然而&#xff0c;公共数据开放共享与隐私保护之间的矛盾日益凸显&#xff0c;如何在确保数据安全的…...

[创业之路-196]:华为成功经验的总结与教训简单总结

目录 前言&#xff1a; 成功经验 教训归纳 前言&#xff1a; 华为作为世界领先的通信设备制造商&#xff0c;其成功经验与教训值得深入探讨。 以下是对华为成功经验的总结与教训的归纳&#xff1a; 成功经验 战略定位明确&#xff1a; 华为始终坚持“死死抓住核心技术”…...

使用 NVIDIA DALI 计算视频的光流

引言 光流&#xff08;Optical Flow&#xff09;是计算机视觉中的一种技术&#xff0c;主要用于估计视频中连续帧之间的运动信息。它通过分析像素在时间维度上的移动来预测运动场&#xff0c;广泛应用于目标跟踪、动作识别、视频稳定等领域。 光流的计算传统上依赖 CPU 或 GP…...

【UE5】pmx导入UE5,套动作。(防止“气球人”现象。

参考视频&#xff1a;UE5Animation 16: MMD模型與動作導入 (繁中自動字幕) 问题所在&#xff1a; 做法记录&#xff08;自用&#xff09; 1.导入pmx&#xff0c;删除这两个。 2.转换给blender&#xff0c;清理节点。 3.导出时&#xff0c;内嵌贴图&#xff0c;选“复制”。 …...

vue预览和下载 pdf、ppt、word、excel文档,文件类型为链接或者base64格式或者文件流,

** 方法1&#xff1a;word、xls、ppt、pdf 这些文件&#xff0c; 如果预览的文件是链接可以直接打开&#xff0c;可用微软官方的预览地址 ** <iframe width"100%" :src"textVisibleURl " id"myFramePPT" style"border: none;backgroun…...

前端如何实现大文件上传

‌在前端实现大文件上传的主要方法包括分片上传、断点续传、WebSocket上传和通过第三方服务上传。‌ ‌分片上传‌&#xff1a;将大文件切割成多个小片段&#xff0c;然后分别上传。可以使用HTML5的File API和Blob对象&#xff0c;通过FileReader读取文件内容&#xff0c;然后使…...

如何评估并持续优化AI呼入机器人的使用效果

如何评估并持续优化AI呼入机器人的使用效果 作者&#xff1a;开源呼叫中心FreeIPCC 随着人工智能技术的快速发展&#xff0c;AI呼入机器人在客户服务、技术支持等多个领域得到了广泛应用。这些智能系统不仅提高了工作效率&#xff0c;降低了运营成本&#xff0c;还显著改善了…...

找不同,找原因

Yes, you can use “by the time I get back to it” instead of “get around to it,” but there’s a slight difference in tone and meaning: • “Get around to it” implies finally finding the time or motivation to do something after delaying or procrastina…...

OpenCV 学习记录:首篇

最近在学习机器视觉&#xff0c;希望能通过记录博客的形式来鞭策自己坚持学完&#xff0c;同时也把重要的知识点记录下来供参考学习。 1. OpenCV 介绍与模块组成 什么是 OpenCV&#xff1f; OpenCV (Open Source Computer Vision Library) 是一个开源的计算机视觉和机器学习软…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎&#xff08;Physics Engine&#xff09; 物理引擎 是一种通过计算机模拟物理规律&#xff08;如力学、碰撞、重力、流体动力学等&#xff09;的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互&#xff0c;广泛应用于 游戏开发、动画制作、虚…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

JDK 17 新特性

#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持&#xff0c;不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的&#xff…...