Restaurants WebAPI(三)——Serilog/FluenValidation
文章目录
- 项目地址
- 一、Serilog使用
- 1.1 安装 Serilog
- 1.2 注册日志服务
- 1.3 设置日志级别和详情
- 1.4 配置到文件里
- 1.5 给不同的环境配置日志
- 1.5.1 配置appsettings.Development.json
- 二、Swagger的使用
- 三、自定义Exception中间件
- 3.1 使用FluentValidation
项目地址
- 教程作者:
- 教程地址:
- 代码仓库地址:
- 所用到的框架和插件:
dbt
airflow
一、Serilog使用
1.1 安装 Serilog
给Restaurants.API
层安装Serilog
<ItemGroup><PackageReference Include="Microsoft.EntityFrameworkCore.Design" Version="9.0.0"><PrivateAssets>all</PrivateAssets><IncludeAssets>runtime; build; native; contentfiles; analyzers; buildtransitive</IncludeAssets></PackageReference><PackageReference Include="Serilog.AspNetCore" Version="9.0.0" /></ItemGroup>
1.2 注册日志服务
注册日志服务到程序入口Program.cs
builder.Host.UseSerilog((context, configuration) =>configuration.MinimumLevel.Override("Microsoft", LogEventLevel.Warning).MinimumLevel.Override("Microsoft.EntityFrameworkCore", LogEventLevel.Information).WriteTo.Console()
);app.UseSerilogRequestLogging();
1.3 设置日志级别和详情
- 程序入口设置日志级别 ①程序级别是Warning;②EntityFrameworkCore显示Information;③ 配置日志显示内容
builder.Host.UseSerilog((context,configuration) =>configuration.MinimumLevel.Override("Microsoft",LogEventLevel.Warning).MinimumLevel.Override("Microsoft.EntityFrameworkCore",LogEventLevel.Information).WriteTo.Console(outputTemplate: "[{Timestamp:dd-MM HH:mm:ss} {Level:u3}] |{SourceContext}| {NewLine}{Message:lj}{NewLine}{Exception}")
);
- 在EFcore的配置文件设置日志显示
Restaurants.Infrastructure/Extensions/ServiceCollectionExtensions.cs
3. 将需要显示的信息添加到各个Handler里
logger
相关文章:

Restaurants WebAPI(三)——Serilog/FluenValidation
文章目录 项目地址一、Serilog使用1.1 安装 Serilog1.2 注册日志服务1.3 设置日志级别和详情1.4 配置到文件里1.5 给不同的环境配置日志1.5.1 配置appsettings.Development.json二、Swagger的使用三、自定义Exception中间件3.1 使用FluentValidation项目地址 教程作者:教程地址…...

概率论得学习和整理32: 用EXCEL描述正态分布,用δ求累计概率,以及已知概率求X的区间
目录 1 正态分布相关 2 正态分布的函数和曲线 2.1 正态分布的函数值,用norm.dist() 函数求 2.2 正态分布的pdf 和 cdf 2.3 正态分布的图形随着u 和 δ^2的变化 3 正态分布最重要的3δ原则 3.0 注意,这里说的概率一定是累计概率CDF,而…...

【原生js案例】让你的移动页面实现自定义的上拉加载和下拉刷新
目前很多前端UI都是自带有上拉加载和下拉刷新功能,按照官网配置去实现即可,比如原生小程序,vantUI等UI框架,都替我们实现了内部功能。 那如何自己来实现一个上拉加载和下拉刷新的功能? 实现效果 不用浏览器的css滚动条,自定义实现滚动效果 自定义实现滚动,添加上拉加载…...
【linux 常用命令】
1. 使用xshell 通过SSH连接到Linux服务器 ssh -p 端口号 usernameip地址2. 查看当前目录下的子文件夹的内存占用情况 du -a -h -d 1或者 du -ah -d 1-a :展示所有子文件夹(包括隐藏文件夹),-h :以人类可读的形式&am…...

【JetPack】Room数据库笔记
Room数据库笔记 ORM框架:对齐数据库数据结构与面向对象数据结构之间的关系,使开发编程只考虑面向对象不需要考虑数据库的结构 Entity : 数据实体,对应数据库中的表 <完成面向对象与数据库表结构的映射> 注解: 类添加注解…...

【CSS in Depth 2 精译_088】第五部分:添加动效概述 + 第 15 章:CSS 过渡特效概述 + 15.1:状态间的由此及彼
当前内容所在位置(可进入专栏查看其他译好的章节内容) 第五部分 添加动效 ✔️【第 15 章 过渡】 ✔️ 15.1 状态间的由此及彼 ✔️15.2 定时函数 文章目录 第 5 部分 添加动效 Adding motion第 15 章 过渡 Transitions15.1 状态间的由此及彼 From here…...

# 起步专用 - 哔哩哔哩全模块超还原设计!(内含接口文档、数据库设计)
↑ 上方下载文档 (大小374KB) 接口文档预览 (超过50个接口) 一、数据库25张表er-关系清晰构图!(tip: 鼠标右键图片 > 放大图像) 二、难点/经验 详细说明 热门评论排序评论点赞列表|DTO封装经验分享|精华接口文档说明 组员都说喜欢分档对应枚举码 如果这篇文章…...

[机器学习]XGBoost(3)——确定树的结构
XGBoost的目标函数详见[机器学习]XGBoost(2)——目标函数(公式详解) 确定树的结构 之前在关于目标函数的计算中,均假设树的结构是确定的,但实际上,当划分条件不同时,叶子节点包含的…...

PHP阶段一
PHP 一门编程语言 运行在服务器端 专门用户开发网站的 脚本后缀名.php 与HTML语言进行混编,脚本后缀依然是.php 解释型语言,不要编译直接运行 PHP运行需要环境: Windows phpstudy Linux 单独安装 Web 原理简述 1、打开浏览器 2、输入u…...

用人话讲计算机:Python篇!(十五)迭代器、生成器、装饰器
一、迭代器 (1)定义 标准解释:迭代器是 Python 中实现了迭代协议的对象,即提供__iter__()和 __next__()方法,任何实现了这两个方法的对象都可以被称为迭代器。 所谓__iter__(),即返回迭代器自身 所谓__…...

5G -- 5G网络架构
5G组网场景 从4G到5G的网络演进: 1、UE -> 4G基站 -> 4G核心网 * 部署初中期,利用存量网络,引入5G基站,4G与5G基站并存 2、UE -> (4G基站、5G基站) -> 4G核心网 * 部署中后期,引入5G核心网&am…...

VR线上展厅的色彩管理如何影响用户情绪?
VR线上展厅的色彩管理对用户情绪的影响是多方面的,以下是专业从事VR线上展厅制作的圆桌3D云展厅平台为大家介绍的一些关键点: 情感共鸣:色彩能够激发特定的情感反应。例如,暖色调(如红色、橙色)通常与活力和…...

Vue3:uv-upload图片上传
效果图: 参考文档: Upload 上传 | 我的资料管理-uv-ui 是全面兼容vue32、nvue、app、h5、小程序等多端的uni-app生态框架 (uvui.cn) 代码: <view class"greenBtn_zw2" click"handleAddGroup">添加班级群</vie…...

大数据机器学习算法和计算机视觉应用07:机器学习
Machine Learning Goal of Machine LearningLinear ClassificationSolutionNumerical output example: linear regressionStochastic Gradient DescentMatrix Acceleration Goal of Machine Learning 机器学习的目标 假设现在有一组数据 x i , y i {x_i,y_i} xi,yi&…...

基于asp.net游乐园管理系统设计与实现
博主介绍:专注于Java(springboot ssm 等开发框架) vue .net php python(flask Django) 小程序 等诸多技术领域和毕业项目实战、企业信息化系统建设,从业十五余年开发设计教学工作 ☆☆☆ 精彩专栏推荐订阅☆☆☆☆☆不然下次找…...

一区牛顿-拉夫逊算法+分解+深度学习!VMD-NRBO-Transformer-GRU多变量时间序列光伏功率预测
一区牛顿-拉夫逊算法分解深度学习!VMD-NRBO-Transformer-GRU多变量时间序列光伏功率预测 目录 一区牛顿-拉夫逊算法分解深度学习!VMD-NRBO-Transformer-GRU多变量时间序列光伏功率预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.中科院一区…...

uniapp使用腾讯地图接口的时候提示此key每秒请求量已达到上限或者提示此key每日调用量已达到上限问题解决
要在创建的key上添加配额 点击配额之后进入分配页面,分配完之后刷新uniapp就可以调用成功了。...
WPF 完美解决改变指示灯的颜色
WPF 完美解决改变指示灯的颜色 原有:自己再做WPF页面设计后发现直接去查找页面多个控件嵌套情况下找不到指示灯(Button实现的,详细可以看这篇文章 这里),具体看看来如何实现 加粗样式思路:无论多级嵌套&a…...

Flutter/Dart:使用日志模块Logger Easier
Flutter笔记 Flutter/Dart:使用日志模块Logger Easier Logger Easier 是一个为 Dart 和 Flutter 应用程序量身定制的现代化日志管理解决方案。它提供了一个高度灵活、功能丰富的日志记录系统,旨在简化开发者的日志管理工作,同时提供一定的定制…...

阿里云云服务器初始化
如果我们的云服务器出现无法挽回的错误时,我们可以尝试初始化云服务器进行解决。 首先搜索阿里云(你要先确认自己已经购买了阿里云的云服务器): 登录账号后主页向下划 进入后点击管理控制台 点击进入后可以看到正在运行࿰…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

PL0语法,分析器实现!
简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...

NFT模式:数字资产确权与链游经济系统构建
NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...

k8s业务程序联调工具-KtConnect
概述 原理 工具作用是建立了一个从本地到集群的单向VPN,根据VPN原理,打通两个内网必然需要借助一个公共中继节点,ktconnect工具巧妙的利用k8s原生的portforward能力,简化了建立连接的过程,apiserver间接起到了中继节…...
【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)
1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...

【Redis】笔记|第8节|大厂高并发缓存架构实战与优化
缓存架构 代码结构 代码详情 功能点: 多级缓存,先查本地缓存,再查Redis,最后才查数据库热点数据重建逻辑使用分布式锁,二次查询更新缓存采用读写锁提升性能采用Redis的发布订阅机制通知所有实例更新本地缓存适用读多…...

华为OD机试-最短木板长度-二分法(A卷,100分)
此题是一个最大化最小值的典型例题, 因为搜索范围是有界的,上界最大木板长度补充的全部木料长度,下界最小木板长度; 即left0,right10^6; 我们可以设置一个候选值x(mid),将木板的长度全部都补充到x,如果成功…...

第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10+pip3.10)
第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10pip3.10) 一:前言二:安装编译依赖二:安装Python3.10三:安装PIP3.10四:安装Paddlepaddle基础框架4.1…...

【深度学习新浪潮】什么是credit assignment problem?
Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...