最优二叉搜索树【东北大学oj数据结构10-4】C++
题面
最优二叉搜索树是由 n 个键和 n+1 个虚拟键构造的二叉搜索树,以最小化搜索操作的成本期望值。
给定一个序列 K=k1,k2,...,kn,其中 n 个不同的键按排序顺序 ,我们希望构造一个二叉搜索树。 对于每个关键 ki,我们有一个概率 pi,搜索将是ki。 一些搜索可能针对不在 K 中的值,因此我们还有 n+1 个虚拟键 d0,d1,d2,...,dn 表示不在 K 中的值。虚拟键 di(0≤i≤n) 被定义 如下:
- 如果 i=0,则 di 表示所有小于 k1 的值
- 如果 i=n,则 di表示所有大于 kn 的值。
- 如果 1≤i≤n−1,则 di表示 ki 和 ki+1 之间
对于每个虚拟键 di,我们有一个搜索将对应于 di 的概率 qi。 对于 pi(1≤i≤n) 和 qi(0≤i≤n),我们有
那么在二叉搜索树 T 中搜索的期望成本是
其中depthT(v)是T中节点v的深度。对于给定的一组概率,我们的目标是构造一个期望搜索成本最小的二叉搜索树。 我们称这样的树为最优二叉搜索树。
每个密钥 ki 是一个内部节点,每个虚拟密钥 di 是一个叶子。 例如,下图显示了从样本输入 1 中得到的最优二叉搜索树。
任务
编写一个程序,计算通过给定 pi 获得的最优二叉搜索树上的搜索操作的期望值,搜索将针对 ki 和 qi,搜索将对应于 di。
输入
第一行,给出一个整数 n,表示键的数量。
第二行,pi(1≤i≤n) 以具有四位小数的实数给出。
第三行,qi(0≤i≤n) 以实数形式给出,小数点后四位。
1≤n≤500
0<pi,qi<1
∑i=1npi+∑i=0nqi=1
输出
在一行中打印最优二叉搜索树上搜索操作的期望值。 输出误差不大于10^−4
输入样例
5
0.1500 0.1000 0.0500 0.1000 0.2000
0.0500 0.1000 0.0500 0.0500 0.0500 0.1000
输出样例
2.75000000
代码
#include <iostream>
#include <vector>
#include <iomanip>
#include <algorithm>using namespace std;const double MaxVal = 1e18;void optimalBST(double *p, double *q, int n, vector<vector<double>>& e, vector<vector<int>>& root, vector<vector<double>>& w) {// 初始化只包括虚拟键的子树for (int i = 1; i <= n + 1; ++i) {w[i][i - 1] = q[i - 1];e[i][i - 1] = q[i - 1];}// 由下到上,由左到右逐步计算for (int len = 1; len <= n; ++len) {for (int i = 1; i <= n - len + 1; ++i) {int j = i + len - 1;e[i][j] = MaxVal;w[i][j] = w[i][j - 1] + p[j] + q[j];// 求取最小代价的子树的根for (int k = i; k <= j; ++k) {double temp = e[i][k - 1] + e[k + 1][j] + w[i][j];if (temp < e[i][j]) {e[i][j] = temp;root[i][j] = k;}}}}
}int main() {int n;cin >> n;double* p = new double[n + 1];double* q = new double[n + 1];for (int i = 1; i <= n; ++i) {cin >> p[i];}for (int i = 0; i <= n; ++i) {cin >> q[i];}vector<vector<double>> e(n + 2, vector<double>(n + 2, 0.0));vector<vector<int>> root(n + 2, vector<int>(n + 2, 0));vector<vector<double>> w(n + 2, vector<double>(n + 2, 0.0));optimalBST(p, q, n, e, root, w);cout << fixed << setprecision(10) << e[1][n] << endl;delete[] p;delete[] q;return 0;
}
相关文章:

最优二叉搜索树【东北大学oj数据结构10-4】C++
题面 最优二叉搜索树是由 n 个键和 n1 个虚拟键构造的二叉搜索树,以最小化搜索操作的成本期望值。 给定一个序列 Kk1,k2,...,kn,其中 n 个不同的键按排序顺序 ,我们希望构造一个二叉搜索树。 对于每个关键 ki,我们有一个…...
ESP32应用开发-Webserver
文章目录 库调用实例实现思路技术要点 1. 前端涉及的文件需要包装再发送2. http-GET路由3. http-POST路由 开发环境:Arduino 库调用 #include <WebServer.h> #include <ArduinoJson.h> //IDE没有自带,需自行安装实例 WebServer server…...

【IMU:视觉惯性SLAM系统】
视觉惯性SLAM系统简介 相机(单目/双目/RGBD)与IMU结合起来就是视觉惯性,通常以单目/双目IMU为主。 IMU里面有个小芯片可以测量角速度与加速度,可分为6轴(6个自由度)和9轴(9个自由度)IMU,具体的关于IMU的介…...

前端开发 之 12个鼠标交互特效下【附完整源码】
前端开发 之 12个鼠标交互特效下【附完整源码】 文章目录 前端开发 之 12个鼠标交互特效下【附完整源码】七:粒子烟花绽放特效1.效果展示2.HTML完整代码 八:彩球释放特效1.效果展示2.HTML完整代码 九:雨滴掉落特效1.效果展示2.HTML完整代码 十…...
Unity文件路径访问总结:从基础到高级的资源加载方法
在Unity开发中,文件路径的访问和资源加载是开发者经常需要处理的任务。无论是加载纹理、模型、音频,还是读取配置文件,正确地处理路径和资源加载是确保项目顺利运行的关键。本文将以Unity文件路径访问为主线,详细介绍Unity中常见的…...

AWS Transfer 系列:简化文件传输与管理的云服务
在数字化转型的今天,企业对文件传输、存储和管理的需求日益增长。尤其是对于需要大量数据交换的行业,如何高效、可靠地传输数据成为了一大挑战。为了解决这一难题,AWS 提供了一系列的文件传输服务,统称为 AWS Transfer 系列。这些…...
Jenkins Api Token 访问问题
curl --location http://192.168.18.202:8080/view/ChinaFish/job/Ali/buildWithParameters?token1142be281174ee8fdf58773dedcef7ea4c&DeployTypeUpdateConfig \ --header Authorization: •••••• \ --header Cookie: JSESSIONID.824aa9a5node01ojk9yhh3imc24duwy67…...

垂起固定翼无人机大面积森林草原巡检技术详解
垂起固定翼无人机大面积森林草原巡检技术是一种高效、精准的监测手段,以下是对该技术的详细解析: 一、垂起固定翼无人机技术特点 垂起固定翼无人机结合了多旋翼和固定翼无人机的优点,具备垂直起降、飞行距离长、速度快、高度高等特点。这种无…...
【Leetcode 每日一题】1387. 将整数按权重排序
问题背景 我们将整数 x x x 的 权重 定义为按照下述规则将 x x x 变成 1 1 1 所需要的步数: 如果 x x x 是偶数,那么 x x / 2 x x / 2 xx/2。如果 x x x 是奇数,那么 x 3 x 1 x 3 \times x 1 x3x1。 比方说, x …...
科研笔记 KDD 2025
1 基本介绍 KDD 每年有多次投稿周期。KDD 2025 将有两个截止时间:分别是 2024 年 8 月 1 日和 2025 年 2 月 1 日(全文提交截止时间在摘要提交截止后一周)。 同时,KDD 会议论文集(Proceedings)将分两批出…...

黑马Java面试教程_P8_并发编程
系列博客目录 文章目录 系列博客目录前言1.线程的基础知识1.1 线程和进程的区别?难2频3面试文稿 1.2 并行和并发有什么区别? 难1频1面试文稿 1.3 创建线程的四种方式 难2频4面试文稿 1.4 runnable 和 callable 有什么区别 难2频3面试文稿 1.5 线程的 run…...

网络视频监控平台/安防监控/视频综合管理Liveweb视频汇聚平台解决方案
一、当前现状分析 当前视频资源面临以下问题: 1)不同单位在视频平台建设中以所属领域为单位,设备品牌众多,存在的标准不一,各系统之间也没有统一标准; 2)各单位视频平台建设分散、统筹性差&am…...

workman服务端开发模式-应用开发-后端api推送修改二
需要修改两个地方,第一个是总控制里面的续token延时,第二个是操作日志记录 一、总控续token延时方法 在根目录下app文件夹下controller文件夹下Base.php中修改isLoginAuth方法,具体代码如下: <?php /*** 总控制* User: 龙哥…...
SQL 使用带聚集函数的联结
聚集函数用于汇总数据,通常用于从一个表中计算统计信息,但也可以与联结一起使用。以下是一个例子,展示如何使用聚集函数统计每个顾客的订单数。 示例 1:使用 COUNT() 函数与 INNER JOIN 假设我们需要检索所有顾客及每个顾客所下…...

Restaurants WebAPI(三)——Serilog/FluenValidation
文章目录 项目地址一、Serilog使用1.1 安装 Serilog1.2 注册日志服务1.3 设置日志级别和详情1.4 配置到文件里1.5 给不同的环境配置日志1.5.1 配置appsettings.Development.json二、Swagger的使用三、自定义Exception中间件3.1 使用FluentValidation项目地址 教程作者:教程地址…...

概率论得学习和整理32: 用EXCEL描述正态分布,用δ求累计概率,以及已知概率求X的区间
目录 1 正态分布相关 2 正态分布的函数和曲线 2.1 正态分布的函数值,用norm.dist() 函数求 2.2 正态分布的pdf 和 cdf 2.3 正态分布的图形随着u 和 δ^2的变化 3 正态分布最重要的3δ原则 3.0 注意,这里说的概率一定是累计概率CDF,而…...

【原生js案例】让你的移动页面实现自定义的上拉加载和下拉刷新
目前很多前端UI都是自带有上拉加载和下拉刷新功能,按照官网配置去实现即可,比如原生小程序,vantUI等UI框架,都替我们实现了内部功能。 那如何自己来实现一个上拉加载和下拉刷新的功能? 实现效果 不用浏览器的css滚动条,自定义实现滚动效果 自定义实现滚动,添加上拉加载…...
【linux 常用命令】
1. 使用xshell 通过SSH连接到Linux服务器 ssh -p 端口号 usernameip地址2. 查看当前目录下的子文件夹的内存占用情况 du -a -h -d 1或者 du -ah -d 1-a :展示所有子文件夹(包括隐藏文件夹),-h :以人类可读的形式&am…...

【JetPack】Room数据库笔记
Room数据库笔记 ORM框架:对齐数据库数据结构与面向对象数据结构之间的关系,使开发编程只考虑面向对象不需要考虑数据库的结构 Entity : 数据实体,对应数据库中的表 <完成面向对象与数据库表结构的映射> 注解: 类添加注解…...

【CSS in Depth 2 精译_088】第五部分:添加动效概述 + 第 15 章:CSS 过渡特效概述 + 15.1:状态间的由此及彼
当前内容所在位置(可进入专栏查看其他译好的章节内容) 第五部分 添加动效 ✔️【第 15 章 过渡】 ✔️ 15.1 状态间的由此及彼 ✔️15.2 定时函数 文章目录 第 5 部分 添加动效 Adding motion第 15 章 过渡 Transitions15.1 状态间的由此及彼 From here…...

Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
工程地质软件市场:发展现状、趋势与策略建议
一、引言 在工程建设领域,准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具,正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...
生成 Git SSH 证书
🔑 1. 生成 SSH 密钥对 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" 参数说明: -t rsa&#x…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...

PL0语法,分析器实现!
简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...

Reasoning over Uncertain Text by Generative Large Language Models
https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会
在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...