当前位置: 首页 > news >正文

【机器学习】探索机器学习与人工智能:驱动未来创新的关键技术

在这里插入图片描述

在这里插入图片描述

探索机器学习与人工智能:驱动未来创新的关键技术

  • 前言:
  • 人工智能的核心技术
    • 深度学习:
    • 自然语言处理(NLP):
    • 计算机视觉:
  • 机器学习与人工智能的驱动创新
    • 医疗健康领域
    • 金融行业
    • 智能制造与工业互联网
    • 智慧城市与物联网
  • 面临的挑战与未来展望
  • 总结

前言:


在21世纪的科技浪潮中,机器学习与人工智能无疑是最为耀眼的明星。它们不仅在学术界引发了前所未有的研究热潮,更在商业、医疗、教育、娱乐等多个领域催生了颠覆性的创新应用。随着技术的不断演进,机器学习与人工智能正逐步成为推动社会进步和经济发展的关键力量。

在这里插入图片描述

机器学习,作为人工智能的一个重要分支,通过让计算机从数据中自动学习并改进其性能,实现了对复杂问题的智能处理。从最初的简单分类和回归任务,到如今的深度学习、强化学习等高级算法,机器学习技术的不断突破,为人工智能的发展奠定了坚实的基础。

人工智能,则是一个更为广泛的概念,它涵盖了机器学习、自然语言处理、计算机视觉等多个领域,旨在实现机器的智能化,使其能够像人一样思考、学习和决策。在人工智能的推动下,我们的生活正发生着翻天覆地的变化,从智能家居到自动驾驶汽车,从智能医疗到金融科技,人工智能的应用无处不在,极大地提高了我们的生活质量和工作效率。

人工智能的核心技术


在这里插入图片描述

深度学习:


神经网络基础

神经网络的基本原理可以概括为“连接主义”,即认为人的思维基元是神经元,而不是符号处理过程。神经网络由大量的神经元相互连接而成,每个神经元都具有一个激活函数,用于处理来自其他神经元的输入信息,并产生输出。这种连接方式使得神经网络能够模拟人脑的非线性处理能力,从而实现对复杂问题的有效解决。神经网络的结构通常包括输入层、隐藏层和输出层。

卷积神经网络(CNN)

CNN是深度学习的一种重要模型,特别适用于处理图像数据。CNN的核心组成部分包括卷积层、激活函数、池化层和全连接层。卷积层负责提取图像中的局部特征,激活函数引入非线性,池化层降低特征图的空间维度,全连接层将提取的特征映射到最终的输出。CNN在图像分类、目标检测、语义分割等领域取得了显著成果。

循环神经网络(RNN)与长短时记忆网络(LSTM)

RNN是一类以序列数据为输入,以序列数据为输出,在序列的演进方向进行递归且所有节点按链式连接的神经网络。RNN能够处理序列数据中的时间依赖性,适用于自然语言处理、语音识别等领域。然而,传统的RNN存在梯度消失或爆炸的问题,难以捕捉长序列的信息。为了解决这个问题,LSTM被提出,它是一种特殊的RNN,通过引入门控机制和细胞状态,能够有效缓解梯度消失问题,适用于处理长时间序列的建模任务。

自然语言处理(NLP):


NLP是人工智能和计算语言学的一个分支,旨在使计算机能够理解和处理人类语言。NLP涵盖了从文本分析到生成文本的广泛任务,其目标是让计算机能够像人类一样理解和交流。NLP的核心技术包括词向量表示、神经网络模型等。词向量将单词映射到高维向量空间以捕捉语义和语法特性,神经网络则用于学习和处理语言数据中的模式和序列信息。NLP的应用范围非常广泛,如智能客服、智能翻译、舆情分析等领域。

计算机视觉:


图像识别与分类

图像识别与分类是计算机视觉的基本任务之一。它们的目标是从输入的图像中识别出物体的类别或特征。这些技术广泛应用于安防监控、自动驾驶等领域。

目标检测与跟踪

目标检测是在图像中定位和识别感兴趣的对象的过程。目标跟踪则是在视频序列中持续跟踪特定对象的位置和运动轨迹。这些技术在自动驾驶、视频监控等领域具有广泛的应用前景。

机器学习与人工智能的驱动创新

医疗健康领域


疾病诊断与预测:

机器学习算法,如决策树、贝叶斯网络、人工神经网络等,被用于疾病的早期预测和辅助诊断。这些技术能够分析患者的历史数据,识别出潜在的健康问题,从而提前进行干预。
在医学图像识别方面,AI技术通过自动化的图像识别系统,提高了诊断的准确性和效率,如肿瘤检测、骨折诊断等。

代码示例:

import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense# 数据预处理
data_gen = ImageDataGenerator(rescale=1./255, validation_split=0.2)
train_data = data_gen.flow_from_directory("xray_images/", target_size=(150,150), batch_size=32, subset='training')
val_data = data_gen.flow_from_directory("xray_images/", target_size=(150,150), batch_size=32, subset='validation')# 构建CNN模型
model = Sequential([Conv2D(32, (3,3), activation='relu', input_shape=(150,150,3)),MaxPooling2D(2,2),Conv2D(64, (3,3), activation='relu'),MaxPooling2D(2,2),Flatten(),Dense(128, activation='relu'),Dense(1, activation='sigmoid')
])# 编译与训练
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
history = model.fit(train_data, validation_data=val_data, epochs=10)# 模型评估
val_loss, val_acc = model.evaluate(val_data)
print("Validation Accuracy:", val_acc)

个性化治疗方案推荐:

基于机器学习的个体化用药建议系统能够根据患者的具体情况(如年龄、体重、既往病史等),推荐最适合的药物剂量和治疗方案,从而提高治疗效果并减少副作用。

代码示例:

import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score# 假设医疗特征和诊断结果数据
np.random.seed(0)
X = np.random.rand(100, 10)  # 100个样本,每个样本10个特征
y = (X.sum(axis=1) > 5).astype(int)  # 简单线性阈值决定诊断结果# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 使用逻辑回归模型训练
model = LogisticRegression()
model.fit(X_train, y_train)# 预测和评估
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f"Model accuracy: {accuracy:.2f}")# 模拟AI诊断函数
def ai_diagnosis(patient_features):return model.predict([patient_features])[0]# 对新患者进行诊断
new_patient_features = np.random.rand(1, 10)
diagnosis_result = ai_diagnosis(new_patient_features)
print(f"AI diagnosis for new patient: {'Diseased' if diagnosis_result == 1 else 'Healthy'}")

药物研发与基因组学:

AI和ML算法被用于新药的研发过程中,通过分析大量的化学结构数据,帮助科学家发现新的药物候选物,加速药物的开发周期。
在基因组学研究方面,AI技术也发挥了重要作用,推动了精准医疗的发展。

金融行业


风险管理与信贷评估:

  • AI技术通过深度学习和大数据分析,处理和分析海量的非传统数据(如社交媒体活动、消费习惯、网络行为等),更全面地评估借款人的信用风险。这有助于金融机构做出更准确的信贷决策,降低违约率。
  • AI还可以用于实时监控金融交易数据,发现异常交易行为和模式,并及时发出警报,从而防范欺诈行为的发生。

市场趋势预测与投资策略:

  • AI可以通过分析新闻来源、社交媒体和其他信息,判断市场情绪,预测市场趋势。这有助于金融机构做出更明智的投资决策。
  • 智能投顾系统利用机器学习和深度学习技术,分析投资者的财务状况、风险偏好和投资目标,提供个性化的资产配置建议。与传统的投资顾问相比,智能投顾具有更高的效率和更低的成本。

代码示例:

# 假设已加载并预处理好金融市场数据集
# 使用LSTM模型预测股票价格
from keras.models import Sequential
from keras.layers import LSTM, Dense# 构建LSTM模型
model = Sequential()
model.add(LSTM(50, return_sequences=True, input_shape=(time_steps, features)))
model.add(LSTM(50, return_sequences=False))
model.add(Dense(1))# 编译模型
model.compile(optimizer='adam', loss='mean_squared_error')# 训练模型
# 假设X_train和y_train分别为训练数据的特征和标签
model.fit(X_train, y_train, epochs=100, batch_size=32)# 预测
# 假设X_test为测试数据的特征
y_pred = model.predict(X_test)

智能客服与自动化交易:

  • 聊天机器人作为一种智能客服系统,能够24小时不间断地为客户提供服务。通过自然语言处理技术,聊天机器人可以理解客户的语义和情感,为客户提供准确、及时的回答和解决方案。
  • AI系统还可以实现自动化交易,如算法交易,通过实时数据分析和预测,在极短的时间内做出交易决策,实现快速买卖和盈利。

智能制造与工业互联网


在这里插入图片描述

预测性维护与故障诊断:

  • 基于传感器技术、数据采集、大数据分析、云服务技术,使得基于状态监测的预测性维护变得更加便利,也成本更低。预测性维护是以状态为依据的维修,在机器运行时,对它的主要(或需要)部位进行定期(或连续)的状态监测和故障诊断,判定装备所处的状态,预测装备状态未来的发展趋势,并据此预先制定维修计划。

代码示例:

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score# 假设df是包含设备传感器数据的DataFrame
# 特征列为'feature1', 'feature2', ..., 'featureN',目标列为'fault'
X = df.drop('fault', axis=1)
y = df['fault']X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)print(f'Accuracy: {accuracy_score(y_test, y_pred)}')

生产流程优化与质量控制:

  • 通过引入自动化生产线、机器人等,减少人工操作,提高生产速度和精度。同时,集成物联网、大数据、人工智能等技术,实现生产过程的智能化监控与调度。
  • 利用生产数据分析,预测趋势,调整生产计划,实现精准决策与资源优化配置。此外,机器视觉技术- 也被广泛应用于产品质量控制中,实现了对产品质量的精准把控。

供应链管理与物流优化:

  • AI技术可以用于优化供应链管理,提升产品交付速度与质量。例如,通过供应链整合与协同、需求预测与库存管理、供应商管理与关系建立以及物流优化与运输管理等方式,实现供应链的智能化和高效化。
  • 在物流优化方面,AI技术可以用于智能仓储物流系统的设计和实施,实现对仓库内商品的自动化管理、智能调度和路径规划。

智慧城市与物联网


智能交通管理与出行服务:

  • 自动驾驶技术是AI在交通领域的一个重要应用,它可以提高交通安全性和效率。此外,智能交通系统还可以优化交通流量和路线规划,为市民提供更加便捷的出行服务。

环境保护与资源利用优化:

  • AI技术可以用于能源消耗优化、电力需求预测、可再生能源管理等方面,有助于降低能源成本并改善能源使用效率。
  • 在环境保护方面,AI技术还可以用于监测和分析环境质量数据,为环境保护政策的制定和实施提供科学依据。

代码示例:

from sklearn.cluster import KMeans
import matplotlib.pyplot as plt# 假设X是包含能源消耗数据的二维数组
kmeans = KMeans(n_clusters=3, random_state=42)
kmeans.fit(X)# 可视化聚类结果
plt.scatter(X[:, 0], X[:, 1], c=kmeans.labels_, cmap='viridis')
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='red', s=200, alpha=0.75, marker='X')
plt.show()

公共安全与应急响应:

  • AI技术在公共安全领域也有广泛应用,如智能监控系统的设计和实施,可以实时监测和分析公共安全事件,提高应急响应速度和效率。
  • 通过AI技术对海量数据进行分析和挖掘,可以发现潜在的公共安全风险点,为预防和控制公共安全事-件提供有力支持。

面临的挑战与未来展望


面临的挑战:

  • 数据收集与隐私泄露: AI系统需要大量的数据来进行训练,这往往涉及到个人隐私信息的收集。一旦这些数据被滥用或泄露,用户的隐私将面临严重威胁。例如,Facebook曾因Cambridge Analytica事件陷入数据泄露风波,数千万用户的数据被不当使用。
  • 存储与传输安全隐患: 即使数据在收集过程中得到了妥善处理,但在存储和传输过程中仍存在安全隐患。黑客攻击、内部人员滥用等问题屡见不鲜。例如,Capital One银行曾遭遇数据泄露事件,超过1亿客户的个人信息被盗取。
  • 跨境数据流动难题: 在全球化的背景下,数据的跨境流动变得越来越频繁。但由于各国的法律法规不同,如何确保数据的安全传输成为一个难题。
  • 用户缺乏知情权与控制权: 在数据被收集和使用的过程中,用户往往缺乏足够的知情权和控制权。

未来展望:

  • 加强加密技术: 采用加密技术保护数据的安全传输,确保数据在传输过程中不被窃取。
    提升隐私保护设计:在设计AI系统时,从一开始就考虑隐私保护,确保数据的最小化收集和使用。
  • 增强透明度与用户控制: 提高算法的透明度,让用户了解自己的数据是如何被使用的,并赋予用户更多的控制权。
  • 严格遵守法律法规: 确保数据处理的合法性和合规性,制定和完善相关的法律法规,明确数据收集、使用、存储和传输的规范。

总结


在探索机器学习与人工智能:驱动未来创新的关键技术的征途中,我们不仅见证了技术的飞跃,更深刻体会到了科技对人类社会的深远影响。机器学习与人工智能,作为新时代的智慧引擎,正以前所未有的速度重塑着世界的每一个角落。

在这里插入图片描述

从数据海洋中挖掘价值,到构建智能决策系统,再到推动跨领域的技术融合与创新,机器学习与人工智能展现了其无与伦比的潜力与魅力。这些关键技术不仅优化了生产效率,提升了服务质量,更为我们解决复杂问题、创造美好生活提供了强有力的支持。

让我们携手共进,以机器学习与人工智能为驱动,开启未来创新的新篇章。在这个充满机遇与挑战的时代,共同书写属于我们的辉煌篇章!

在这里插入图片描述

相关文章:

【机器学习】探索机器学习与人工智能:驱动未来创新的关键技术

探索机器学习与人工智能:驱动未来创新的关键技术 前言:人工智能的核心技术深度学习:自然语言处理(NLP):计算机视觉: 机器学习与人工智能的驱动创新医疗健康领域金融行业智能制造与工业互联网智慧…...

React Refs 完整使用指南

React Refs 完整使用指南 1. Refs 基础用法 1.1 创建和访问 Refs // 类组件中使用 createRef class MyComponent extends React.Component {constructor(props) {super(props);this.myRef React.createRef();}componentDidMount() {// 访问 DOM 节点console.log(this.myRef…...

程控电阻箱应用中需要注意哪些安全事项?

程控电阻箱是一种用于精确控制电路中电流和电压的电子元件,广泛应用于电子实验、测试设备以及精密测量仪器中。在应用程控电阻箱时,为确保安全和设备的正常运行,需要注意以下几个安全事项: 1. 正确连接:确保电阻箱与电…...

C/C++基础知识复习(43)

1) 什么是运算符重载?如何在 C 中进行运算符重载? 运算符重载是指在 C 中为现有的运算符定义新的行为,使得它们能够用于用户定义的数据类型(如类或结构体)。通过运算符重载,可以让自定义类型像内置数据类型…...

苍穹外卖-day05redis 缓存的学习

苍穹外卖-day05 课程内容 Redis入门Redis数据类型Redis常用命令在Java中操作Redis店铺营业状态设置 学习目标 了解Redis的作用和安装过程 掌握Redis常用的数据类型 掌握Redis常用命令的使用 能够使用Spring Data Redis相关API操作Redis 能够开发店铺营业状态功能代码 功能实…...

VSCode搭建Java开发环境 2024保姆级安装教程(Java环境搭建+VSCode安装+运行测试+背景图设置)

名人说:一点浩然气,千里快哉风。—— 苏轼《水调歌头》 创作者:Code_流苏(CSDN) 目录 一、Java开发环境搭建二、VScode下载及安装三、VSCode配置Java环境四、运行测试五、背景图设置 很高兴你打开了这篇博客,更多详细的安装教程&…...

PHP MySQL 插入多条数据

PHP MySQL 插入多条数据 在Web开发中,PHP和MySQL的组合是非常常见的。PHP是一种服务器端脚本语言,而MySQL是一种流行的数据库管理系统。在许多情况下,我们可能需要一次性向MySQL数据库插入多条数据。这可以通过几种不同的方法实现&#xff0…...

Oracle安装报错:将配置数据上载到资料档案库时出错

环境:联想服务器 windows2022安装Oracle11g 结论:禁用多余网卡先试试,谢谢。 以下是问题描述和处理过程: 网上处理方式: hosts文件添加如下: 关闭防火墙 暂时无法测试通过。 发现ping不是本地状态,而是…...

JavaScript 中通过Array.sort() 实现多字段排序、排序稳定性、随机排序洗牌算法、优化排序性能,JS中排序算法的使用详解(附实际应用代码)

目录 JavaScript 中通过Array.sort() 实现多字段排序、排序稳定性、随机排序洗牌算法、优化排序性能,JS中排序算法的使用详解(附实际应用代码) 一、为什么要使用Array.sort() 二、Array.sort() 的使用与技巧 1、基础语法 2、返回值 3、…...

Deformable DETR:Deformable Transformers for End-to-End Object Detection论文学习

1. 为什么提出了Deformable DETR? 因为DETR本身的计算量大,收敛速度慢。其次是小目标检测效果差。主要原因是Attention模块每次只关注一小部分采样点,导致需要很多轮数才能学习到真实需要关注的目标。 Deformable DETR注意力模块只关注一个…...

机器学习-43-可解释性机器学习库LIME

文章目录 1 LIME1.1 LIME的特点1.2 LIME的步骤2 应用LIME2.1 分类模型2.1.1 创建模型和解释器2.1.2 解释样本2.2 回归模型2.2.1 创建模型和解释器2.2.2 解释样本2.3 文本模型2.3.1 创建模型和解释器2.3.2 解释样本2.4 图像模型2.4.1 创建模型和解释器2.4.2 解释样本3 附录3.1 l…...

【Unity功能集】TextureShop纹理工坊(五)选区

项目源码:在终章发布 索引 选区PS选区选区功能点提炼 TextureShop选区方形区域中间镂空边框的流动虚线SelectedRegion类选择选区更新选区 选区 选区,也既是在当前选中图层中,已选择的编辑区域,我们后续的所有图像编辑操作&#x…...

Spring Cloud OpenFeign快速入门demo

一、应用场景 Spring Cloud OpenFeign 是一个声明式的 HTTP 客户端,旨在简化微服务之间的通信。它使得开发者能够通过简单的接口定义和注解来调用 RESTful API,极大地减少了样板代码。以下是一些典型的应用场景: 微服务间调用:在…...

研发效能DevOps: Vite 使用 Element Plus

目录 一、实验 1.环境 2.初始化前端项目 3.安装 vue-route 4.安装 pinia 5.安装 axios 6.安装 Element Plus 7.gitee创建工程 8. 配置路由映射 9.Vite 使用 Element Plus 二、问题 1.README.md 文档推送到gitee未自动换行 2.访问login页面显示空白 3.表单输入账户…...

sfnt-pingpong -测试网络性能和延迟的工具

sfnt-pingpong 是一个用于测试网络性能和延迟的工具,通常用于测量不同网络环境下的数据包传输性能、吞吐量、延迟等指标。 它通常是基于某种网络协议(如 TCP)执行“ping-pong”式的测试,即客户端和服务器之间相互发送数据包&…...

Kubernetes、Docker 和 Docker Registry 关系是是什么?

Kubernetes(常简称为 k8s)、Docker 和 Docker Registry 是现代云原生应用中三个关键的组件,它们各自承担不同的职责,但在容器化部署和管理过程中紧密协作。以下是它们之间关系的详细解释: 一、核心概念简介 1. Docker…...

docker部署微信小程序自动构建发布和更新

通过 Jenkins 和 Docker 部署微信小程序,并实现自动构建、发布和版本更新,主要涉及以下几个步骤: 设置 Jenkins 环境配置 GitLab 与 Jenkins 的集成构建 Docker 镜像部署和发布微信小程序配置 Jenkins 自动构建 以下是详细的步骤说明&#…...

模仿elementui的Table,实现思路

vue2子组件使用render,给子子组件插槽传值 和elementui的Table一样使用render 在 Vue 2 中,子组件使用render函数向子子组件插槽传值可以通过以下步骤实现: 1、创建子组件 首先创建一个子组件,在子组件中使用render函数来渲染内容…...

Unity中使用环形缓冲区平滑抖动值

环形缓冲数据结构,就是如下图一样的一个收尾相接的列表 在index指针指到4时,再往里添加数据,index就会指向0,并覆盖已有数据。 如何绘制Sin函数,请看下面一篇文章 Unity中如何实现绘制Sin函数图像-CSDN博客 接下来要…...

【Yonghong 企业日常问题 06】上传的文件不在白名单,修改allow.jar.digest属性添加允许上传的文件SH256值?

文章目录 前言问题描述问题分析问题解决1.允许所有用户上传驱动文件2.如果是想只上传白名单的驱动 前言 该方法适合永洪BI系列产品,包括不限于vividime desktop,vividime z-suit,vividime x-suit产品。 问题描述 当我们连接数据源的时候&a…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...

uniapp 开发ios, xcode 提交app store connect 和 testflight内测

uniapp 中配置 配置manifest 文档:manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号:4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)

引言 在人工智能飞速发展的今天,大语言模型(Large Language Models, LLMs)已成为技术领域的焦点。从智能写作到代码生成,LLM 的应用场景不断扩展,深刻改变了我们的工作和生活方式。然而,理解这些模型的内部…...

省略号和可变参数模板

本文主要介绍如何展开可变参数的参数包 1.C语言的va_list展开可变参数 #include <iostream> #include <cstdarg>void printNumbers(int count, ...) {// 声明va_list类型的变量va_list args;// 使用va_start将可变参数写入变量argsva_start(args, count);for (in…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用

一、方案背景​ 在现代生产与生活场景中&#xff0c;如工厂高危作业区、医院手术室、公共场景等&#xff0c;人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式&#xff0c;存在效率低、覆盖面不足、判断主观性强等问题&#xff0c;难以满足对人员打手机行为精…...

比较数据迁移后MySQL数据库和OceanBase数据仓库中的表

设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...

【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案

目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后&#xff0c;迭代器会失效&#xff0c;因为顺序迭代器在内存中是连续存储的&#xff0c;元素删除后&#xff0c;后续元素会前移。 但一些场景中&#xff0c;我们又需要在执行删除操作…...