本科阶段最后一次竞赛Vlog——2024年智能车大赛智慧医疗组准备全过程——13使用Resnet-Bin
本科阶段最后一次竞赛Vlog——2024年智能车大赛智慧医疗组准备全过程——13使用Resnet-Bin
根据前面的内容,目前已经可以获取到resnet的bin模型
1 .Resnet的bin测试
这里给大家一个测试视频里面黑线的demo,大家可以用来测试自己的黑线识别精度
import cv2
import numpy as np
from hobot_dnn import pyeasy_dnn as dnndef convert_bgr_to_nv12(cv_image):yuv_image = cv2.cvtColor(cv_image, cv2.COLOR_BGR2YUV)y_channel = yuv_image[:, :, 0]u_channel = yuv_image[::2, ::2, 1]v_channel = yuv_image[::2, ::2, 2]uv_channel = np.empty((u_channel.shape[0], u_channel.shape[1] * 2), dtype=u_channel.dtype)uv_channel[:, ::2] = u_channeluv_channel[:, 1::2] = v_channelnv12_image = np.concatenate((y_channel.flatten(), uv_channel.flatten()))return nv12_imagedef process_frame(cv_image, models, original_width, original_height):# 将图像缩放到模型期望的尺寸cv_image_resized = cv2.resize(cv_image, (224, 224), interpolation=cv2.INTER_LINEAR)nv12_image = convert_bgr_to_nv12(cv_image_resized)# 使用模型进行推理outputs = models[0].forward(np.frombuffer(nv12_image, dtype=np.uint8))outputs = outputs[0].buffer# 假设模型输出是在224x224图像上的比例坐标x_ratio, y_ratio = outputs[0][0][0][0], outputs[0][1][0][0]# 将比例坐标转换为原始视频帧的像素坐标x_pixel = int(x_ratio * original_width)y_pixel = int(y_ratio * original_height)return x_pixel, y_pixeldef main():models = dnn.load('/root/model/resnet18_224x224_nv12.bin')cap = cv2.VideoCapture("/root/model/03.avi")# 确定视频编解码器和创建VideoWriter对象fourcc = cv2.VideoWriter_fourcc(*'XVID')out = cv2.VideoWriter('output.avi', fourcc, 20.0, (640, 480))while cap.isOpened():ret, frame = cap.read()if not ret:breakx, y = process_frame(frame, models,640,480)cv2.circle(frame, (x, y), radius=5, color=(0, 0, 255), thickness=-1)# 写入帧到输出文件out.write(frame)# cv2.imshow('Frame', frame)if cv2.waitKey(1) & 0xFF == ord('q'):breakcap.release()out.release() # 释放VideoWriter对象cv2.destroyAllWindows()if __name__ == "__main__":main()
2.Resnet的bin使用
如果按照前文的Resnet训练转化过程,这里唯一需要注意的就是加载时候,对于图片大小的244控制以及对于输出反归一化,
下面把代码给大家大家有需要可以使用
#!/usr/bin/env python3
# -*- coding: utf-8 -*-import rclpy
from rclpy.node import Node
from geometry_msgs.msg import Twist
from sensor_msgs.msg import Image
import cv2
import numpy as np
from hobot_dnn import pyeasy_dnn as dnn
def convert_bgr_to_nv12(cv_image):# 首先将BGR图像转换为YUV格式yuv_image = cv2.cvtColor(cv_image, cv2.COLOR_BGR2YUV)# 提取Y通道y_channel = yuv_image[:, :, 0]# 对U和V通道进行下采样u_channel = yuv_image[::2, ::2, 1]v_channel = yuv_image[::2, ::2, 2]# 交错U和V通道以形成UV通道uv_channel = np.empty((u_channel.shape[0], u_channel.shape[1] * 2), dtype=u_channel.dtype)uv_channel[:, ::2] = u_channeluv_channel[:, 1::2] = v_channel# 将Y通道和UV通道合并为NV12格式nv12_image = np.concatenate((y_channel.flatten(), uv_channel.flatten()))return nv12_image
class ResNetControlNode(Node):def __init__(self, name):super().__init__(name)self.cmd_vel_pub = self.create_publisher(Twist, "/cmd_vel", 10)self.subscription = self.create_subscription(Image, "/image", self.image_callback, 10)self.models = dnn.load('/root/model/resnet18_224x224_nv12.bin')# 微调PID参数self.Kp = 0.8 # 提高比例系数以增加对偏差的反应速度self.Kd = 0.5 # 减少微分系数以避免过冲self.Ki = 0.1 # 引入积分系数以帮助消除稳态误差(如果之前未使用)self.Target_value = 320.0self.last_Err = 0.0self.total_Err = 0.0self.output = 0.0self.twist = Twist()def image_callback(self, msg):# 使用CvBridge将ROS图像消息转换为OpenCV图像np_arr = np.frombuffer(msg.data, np.uint8)# 使用OpenCV解码MJPG数据image_np = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)# 假设模型需要224x224大小的图像cv_image_resized = cv2.resize(image_np, (224, 224), interpolation=cv2.INTER_LINEAR)nv12_image = convert_bgr_to_nv12(cv_image_resized)# 转换图像格式以符合模型输入要求(如果需要)# 模型推理outputs = self.models[0].forward(np.frombuffer(nv12_image, dtype=np.uint8))outputs = outputs[0].bufferx, y = int(640 * outputs[0][0][0][0]), int(480 * outputs[0][1][0][0])# print(x,y)# PID控制逻辑self.Error = self.Target_value - xself.total_Err += self.Errorself.output = self.Kp * self.Error + self.Kd * (self.Error - self.last_Err)self.last_Err = self.Errorself.twist.linear.x = 0.4self.twist.angular.z = self.output / 100self.cmd_vel_pub.publish(self.twist)print(f"( {x}, {y} ) output = {int(self.output)}")def main(args=None):rclpy.init(args=args)node = ResNetControlNode("resnet_control_node")rclpy.spin(node)node.destroy_node()rclpy.shutdown()if __name__ == "__main__":main()
3.总结
到目前为止整个智能车地平线组的单个拆分任务已经结束了,下面就是编写总控制进行逻辑的判断了
下一节给大家分享一下,我再摸索过程中看到大佬的以及交流得到的思路。
相关文章:
本科阶段最后一次竞赛Vlog——2024年智能车大赛智慧医疗组准备全过程——13使用Resnet-Bin
本科阶段最后一次竞赛Vlog——2024年智能车大赛智慧医疗组准备全过程——13使用Resnet-Bin 根据前面的内容,目前已经可以获取到resnet的bin模型 1 .Resnet的bin测试 这里给大家一个测试视频里面黑线的demo,大家可以用来测试自己的黑线识别精度 …...
FFmpeg第三话:FFmpeg 视频解码详解
FFmpeg 探索之旅 一、FFmpeg 简介与环境搭建 二、FFmpeg 主要结构体剖析 三、FFmpeg 视频解码详解 FFmpeg第三话:FFmpeg 视频解码详解 FFmpeg 探索之旅前言一、视频解码基础二、FFmpeg 关键 API 深度剖析(一)avformat_open_input()ÿ…...
解决 vue3 中 echarts图表在el-dialog中显示问题
原因: 第一次点开不显示图表,第二次点开虽然显示图表,但是图表挤在一起,页面检查发现宽高只有100px,但是明明已经设置样式宽高100% 这可能是由于 el-dialog 还没有完全渲染完成,而你的 echarts 组件已经开始尝试渲染图…...
C++ OpenGL学习笔记(4、绘制贴图纹理)
相关链接: C OpenGL学习笔记(1、Hello World空窗口程序) C OpenGL学习笔记(2、绘制橙色三角形绘制、绿色随时间变化的三角形绘制) C OpenGL学习笔记(3、绘制彩色三角形、绘制彩色矩形) 通过前面…...
关于我的Java考试被老师挂掉的这件事......
目录 1.事情起源 2.问题出现 3.最后的考试结果 4.问题如何解决的 5.此件事情引发我的思考 1.事情起源 现在是2024-12-25中午的13:08分,我于今天上虞结束了这个学期的Java课程的学习,上午的课程内容就是开始,使用MVC实现对于题目要求的这…...
Websocket客户端从Openai Realtime api Sever只收到部分数据问题分析
目录 背景 分析 解决方案 背景 正常情况下,会从Openai Realtime api Sever收到正常的json数据,但是当返回音频数据时,总会返回非json数据。这是什么问题呢? 分析 期望的完整响应数据如下: {"session": {"inp…...
Unity 6 中的新增功能
Unity 6 是 Unity 的最新版本。 一、编辑器和工作流程 Unity 6 中引入的更改 在 Linux 上实现了将文件和资源从 Unity 拖放到外部应用程序的功能。将 Asset Manager for Unity 包添加到 Package Manager > Services > Content Management 部分中。此包允许用户轻松浏览…...
[ComfyUI]颜色提取插件,Flux专属,让出图更加可控
一、介绍 今天介绍这个好玩的插件 ComfyUI APQNodes,默认的Flux模型是无法理解准确的颜色代码。 而这个插件可以帮我忙将输入的十六进制颜色代码转换为 FLUX.1 Dev 已知的最相似的颜色名称(来自预先测试的 155 个颜色名称)。 所以就…...
【magic-dash】01:magic-dash创建单页面应用及二次开发
文章目录 一、magic-dash是什么1.1 安装1.2 使用1.2.1 查看内置项目模板1.2.2 生成指定项目模板1.2.3 查看当前magic-dash版本1.2.4 查看命令说明1.2.5 内置模板列表二、创建虚拟环境并安装magic-dash三、magic-dash单页工具应用开发3.1 创建单页面项目3.1.1 使用命令行创建单页…...
ChatGPT等大语言模型与水文水资源、水环境领域的深度融合
聚焦GPT等大语言模型与水文水资源领域的深度融合,通过系统化内容与实践案例,讲解如何高效完成时间序列分析、空间数据处理、水文模型优化以及智能科学写作等任务。同时,展示AI在高级机器学习模型开发、资源优化算法编程与模型微调中的最新应用…...
机器学习连载
1 机器学习基础知识 机器学习(Machine learning)是人工智能的子集,是实现人工智能的一种途径,但并不是唯一的途径。它是一门专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已…...
linux查看天气预报
wttr.in 是一个简单且功能强大的命令行天气查询工具,实现了命令行下查看天气的炫酷效果。 开源地址:GitHub - chubin/wttr.in: :partly_sunny: The right way to check the weather 一. 什么是 wttr.in? wttr.in 是一个基于 Web 的命令行天…...
minikube start --driver=docker --force
minikube start --driver=docker --force 😄 minikube v1.34.0 on Debian 11.7 (amd64) ❗ minikube skips various validations when --force is supplied; this may lead to unexpected behavior ✨ Using the docker driver based on user configuration 🛑 The…...
游戏引擎学习第58天
发现一个vscode Log 断点的用法 回顾 我们正在继续推进工作,之前做了一些测试和清理工作,但还有一件事没有完成,因此我们还没有完全回到功能平衡的状态。昨天我们已经为实体做了空间划分,所以接下来的目标是继续完成这部分工作&a…...
我用火语言RPA生成EXE可执行文件,并使用激活码对EXE进行管理
火语言RPA,不仅可以生成EXE独立可执行文件,还可以使用激活码的功能对EXE进行管理,限制激活类型:在线、离线,EXE有效天数等进行管理,有限制的自由才是真正的自由! 生成EXE的时候选择App注册码验证类型 当分享…...
【机器学习(九)】分类和回归任务-多层感知机(Multilayer Perceptron,MLP)算法-Sentosa_DSML社区版 (1)11
文章目录 一、算法概念11二、算法原理(一)感知机(二)多层感知机1、隐藏层2、激活函数sigma函数tanh函数ReLU函数 3、反向传播算法 三、算法优缺点(一)优点(二)缺点 四、MLP分类任务实…...
32位MCU主控智能电表方案
智能电表作为电网数据采集的核心设备,承担着至关重要的角色。它主要用于采集、计量和传输原始的电能数据,确保电力系统的高效运行。该设备配备了多种通讯接口,如RS485和以太网,使得用户能够轻松进行用电检测、集中抄表以及电力管理…...
ConstraintLayout是完美的布局吗?
非也! <TextViewandroid:id"id/tv_tittle_msg"android:layout_width"wrap_content"android:layout_height"wrap_content"android:layout_marginLeft"16dp"android:layout_marginRight"16dp"android:layout_ma…...
39.在 Vue3 中使用 OpenLayers 导出 GeoJSON 文件及详解 GEOJSON 格式
一、引言 在 Web 地图开发领域,Vue3 作为一款流行的前端框架,结合强大的 OpenLayers 地图库,能够实现丰富多样的地图功能。其中,将地图数据以 GeoJSON 格式导出是一项常见且实用的需求,本文将深入探讨如何在 Vue3 环境…...
Feign的调用demo 和 EnableFeignClients的包名
在你的场景下,如果刷题微服务通过 Maven 引入了 auth-api 模块,并且 auth-api 中定义了 Feign 接口(例如获取用户名的方法),你需要在 刷题微服务 中的启动类上配置 EnableFeignClients 注解。配置中 basePackages 参数…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
ESP32读取DHT11温湿度数据
芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序
一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...
VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP
编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...
无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...
TCP/IP 网络编程 | 服务端 客户端的封装
设计模式 文章目录 设计模式一、socket.h 接口(interface)二、socket.cpp 实现(implementation)三、server.cpp 使用封装(main 函数)四、client.cpp 使用封装(main 函数)五、退出方法…...
k8s从入门到放弃之Pod的容器探针检测
k8s从入门到放弃之Pod的容器探针检测 在Kubernetes(简称K8s)中,容器探测是指kubelet对容器执行定期诊断的过程,以确保容器中的应用程序处于预期的状态。这些探测是保障应用健康和高可用性的重要机制。Kubernetes提供了两种种类型…...
