触控算法总结
一、触控湿手指算法的具体实现原理涉及多个方面的技术和方法,主要包括以下几个关键点
1.电容变化检测
电容式触摸屏通过检测电容变化来确定触摸位置。当手指接触屏幕时,会引起电容的变化。然而,当手指湿润时,水分会影响电容值,导致触摸屏误判成无法正确识别触控点
2.噪声过滤:
湿手指触控时,水分会在触摸屏上形成导电路径,产生噪声信号。触控算法需要通过噪声过滤技术来抑制这些噪声信号,确保触控信号的准确性。常见的的噪声过滤方法包括低通滤波、高通滤波和带通滤波等,
3.信号处理与还原:
触控算法需要对采集到的电容信号进行处理和还原。通过分析电容值的变化,算法可以区分出手指触控信号和水分干扰信号。常用的方法包括信号平均信号平滑和信号插值等。
4.多点触控识别:
湿手指触控时,可能会出现多个触控点(如水滴和手指同时接触屏幕)。触控算法需要具备多点触控识别能力,能够准确区分出真实的手指触控点和虚最的水滴触控点4
5.动态调整阈值:
触控算法可以根据环境条件(如湿度、温度等)动态调整电容值的阈值,以提高湿手指触控的准确性。例如,在湿度较高的环境下,算法可以降低电容真的阈值,以更好地识别湿手指触控。
6.机器学习与人工智能:
近年来,机器学习和人工智能技术也被应用于触控算法中。通过训练模型,算法可以更准确地只别和处理湿手指触控信号。例如,深度学习模型可以通过大量的触控数据进行训练,学习到不同环境下的触控特征,从而
提高湿手指触控的识别准确性。
总结来说,触控湿手指算法的实现原理主要包括电容变化检测、噪声过滤、信号处理与还原、多点触控识别、动态调整闭值以及机器学习与人工智能技术的应用。这些技术的结合,使得触控屏设备在湿手指触控的情况下,仍
能保持较高的触控准确性和用户体验。
二、滤波算法
1.低通滤波器(Low-Pass Filter, LPF)
低通滤波器允许低频信号通过,同时衰减高频信号。它常用于去除信号中的高频噪声,保留有用的低频成分
应用:
去除高频噪声
。平滑信号
。在音频处理中,去除高频噪声和干扰
。在图像处理中,进行模糊处理
实现:
模拟实现:使用电阻、电容和电感元件构建RC、RL或RLC电路。
数字实现:使用数字滤波器算法,如移动平均滤波器、IIR滤波器或FIR滤波器
2.高通滤波器(High-PassFilter,HPF)
高通滤波器允许高频信号通过,同时衰减低频信号。它常用于去除信号中的低频成分,如直流偏移或低频噪声
应用:
。去除低频噪声和直流偏移
。强调信号中的高频成分
。在音频处理中,去除低频噪声和隆隆声
在图像处理中,增强边缘和细节
实现:
模拟实现:使用电阻、电容和电感元件构建RC、RL或RLC电路。
。数字实现:使用数字滤波器算法,如差分滤波器、IIR滤波器或FIR滤波世界
3.带通滤波器(Band-PassFilter,BPF)
带通滤波器允许特定频率范围内的信号通过,同时衰减该范围之外的高频和低频信号。它常用于提取信号中的特定频率成分
应用:
。提取特定频率范围内的信号
。在通信系统中,选择特定频段的信号
。在音频处理中,提取特定频段的声音
。在生物医学信号处理中,提取心电图(ECG)或脑电图(EEG)中的特定频率成分
实现:
。模拟实现:使用电阻、电容和电感元件构建RLC电路,或级联低通和高通滤波器
。数字实现:使用数字滤波器算法,如级联低通和高通FIR滤波器器或IIR滤波器
相关文章:
触控算法总结
一、触控湿手指算法的具体实现原理涉及多个方面的技术和方法,主要包括以下几个关键点 1.电容变化检测 电容式触摸屏通过检测电容变化来确定触摸位置。当手指接触屏幕时,会引起电容的变化。然而,当手指湿润时,水分会影响电容值,导致触摸屏误判成无法正确识别触控点 2.噪声过滤: …...
齐次矩阵包含平移和旋转
第一个矩阵旋转矩阵 A [ R 1 0 0 1 ] A\left[\begin{matrix}R_{1} & 0\\0 & 1\end{matrix}\right] A[R1001] 第一个平移矩阵 B [ 1 T 1 0 1 ] B\left[\begin{matrix}1 & T_{1}\\0 & 1\end{matrix}\right] B[10T11] C [ R 2 0 0 1 ] C\left[\be…...
Move AI技术浅析(四):运动跟踪与估计
一、运动跟踪与估计模块概述 运动跟踪与估计 是 Move AI 的核心模块之一,其主要任务是从提取到的关键点特征中,分析和理解运动的动态特性,包括运动轨迹、速度、加速度、方向等。该模块通常包括 时间序列分析 和 运动估计 两个子模块。 时间…...
NCR+可变电荷块3——NCB/cell绘图1
文献method参考: 蛋白质序列数据从uniprot中获取 https://www.uniprot.org/uniprotkb/P46013/entry https://www.uniprot.org/uniprotkb/P06748/entry、 1,电荷分布计算: Charge distribution was calculated as the sum of the charges …...
数据仓库是什么?数据仓库简介
数据仓库(Data Warehouse)是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持企业的管理决策。以下是对数据仓库的详细解释: 一、定义与特性 定义:数据仓库是构建在组织的现有数据基础上&#x…...
AI的进阶之路:从机器学习到深度学习的演变(二)
AI的进阶之路:从机器学习到深度学习的演变(一) 三、机器学习(ML):AI的核心驱动力 3.1 机器学习的核心原理 机器学习(Machine Learning, ML)突破了传统编程的局限,它不再…...
C++中属性(Attributes)
属性(Attributes)在 C 中的完整讲解 在 C 中,属性(Attributes) 是一种编译时机制,用于附加元数据到函数、变量、类型等元素上,以指导编译器如何优化、检查、警告或者改变编译行为。通过属性&am…...
Go语言中的defer,panic,recover 与错误处理
目录 前言 三个关键字 defer语句 panic语句 recover函数 defer、panic、recover组成的错误处理 总结 前言 在其他编程语言中,如Java,宕机往往以异常的形式存在。底层抛出异常,上层逻辑通过try...catch...fanally机制捕获异常并处理&am…...
(C语言)力扣 904.水果成篮
写在所有的前面: 本文采用C语言实现代码 目录 写在所有的前面:题目说明题目:力扣 904.水果成篮题目出处题目描述Description输入Input输出Output样例Sample限制Hint 解答说明方案解题思路一般情况特殊情况 代码实现其他解释 题目说明 题目…...
2024 年12月英语六级CET6听力原文(Lecture部分)
2024 年12月英语六级CET6听力原文(Long Conersation和Passage) 1 牛津大学关于普遍道德准则的研究及相关观点与建议 译文 2 食物颜色对味觉体验及大脑预期的影响 译文 3 财务资源对意义与幸福之间关系的影响研究 译文...
CentOS下,离线安装vscode的步骤;
前置条件: 1.CentOS7; 步骤: 1.下载vscode指定版本,例如; 例如 code-1.83.1-1696982959.el7.x86_64.rpm 2.使用下面命令: sudo rpm -ivh code-1.83.1-1696982959.el7.x86_64.rpm 其他: 卸载vscode的命…...
ubuntu停止.netcore正在运行程序的方法
在Ubuntu系统中停止正在运行的.NET Core程序,你可以使用以下几种方法: 使用kill命令: 如果你知道.NET Core程序的进程ID(PID),你可以直接使用kill命令来停止它。首先,使用ps命令配合grep来查找.…...
机器学习基础 衡量模型性能指标
目录 1 前言 编辑1.1 错误率(Error rate)&精度(Accuracy)&误差(Error): 1.2 过拟合(overfitting): 训练误差小,测试误差大 1.3 欠拟合(underfitting):训练误差大,测试误差大 1.4 MSE: 1.5 RMSE: 1.6 MAE: 1.7 R-S…...
《OpenCV计算机视觉》-对图片的各种操作(均值、方框、高斯、中值滤波处理)及形态学处理
文章目录 《OpenCV计算机视觉》-对图片的各种操作(均值、方框、高斯、中值滤波处理)边界填充阈值处理图像平滑处理生成椒盐图片均值滤波处理方框滤波处理高斯滤波处理中值滤波处理 图像形态学腐蚀膨胀开运算闭运算顶帽和黑帽 《OpenCV计算机视觉》-对图片…...
如何让Tplink路由器自身的IP网段 与交换机和电脑的IP网段 保持一致?
问题分析: 正常情况下,我的需求是:电脑又能上网,又需要与路由器处于同一局域网下(串流Pico4 VR眼镜),所以,我是这么连接 交换机、路由器、电脑 的: 此时,登录…...
【JetPack】Navigation知识点总结
Navigation的主要元素: 1、Navigation Graph: 一种新的XML资源文件,包含应用程序所有的页面,以及页面间的关系。 <?xml version"1.0" encoding"utf-8"?> <navigation xmlns:android"http://schemas.a…...
InnoDB引擎的内存结构
InnoDB擅长处理事务,具有自动崩溃恢复的特性 架构图: 由4部分组成: 1.Buffer Pool:缓冲池,缓存表数据和索引数据,减少磁盘I/O操作,提升效率 2.change Buffer:写缓冲区,…...
Y3地图制作1:水果缤纷乐、密室逃脱
文章目录 一、水果缤纷乐1.1 游戏设计1.1.1 项目解析1.1.2 项目优化1.1.3 功能拆分 1.2 场景制作1.2.1 场景需求1.2.2 创建主镜头、绘制草稿,构思文案和情景1.2.3 构建场景地图1.2.4 光源与氛围设置 1.3 游戏初始化1.3.1 物编、UI预设置1.3.2 游戏初始化1.3.2 玩家初…...
ESP32_H2(IDF)学习系列-ADC模数转换(连续转换)
一、简介(节选手册) 1 概述 ESP32-H2 搭载了以下模拟外设: • 一个 12 位逐次逼近型模拟数字转换器 (SAR ADC),用于测量最多来自 5 个管脚上的模拟信号。 • 一个温度传感器,用于测量及监测芯片内部温度。 2 SAR ADC 2…...
如何通过TikTok成功引流到独立站
随着短视频平台的迅猛发展,TikTok已成为全球最受欢迎的社交媒体之一,尤其是在年轻用户群体中更是势不可挡。如果你是一个独立站(如电商网站、博客、个人品牌站等)的运营者,那么如何通过TikTok引流到独立站已经成为一个…...
CTF show Web 红包题第六弹
提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...
智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...
关于 WASM:1. WASM 基础原理
一、WASM 简介 1.1 WebAssembly 是什么? WebAssembly(WASM) 是一种能在现代浏览器中高效运行的二进制指令格式,它不是传统的编程语言,而是一种 低级字节码格式,可由高级语言(如 C、C、Rust&am…...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...
【Go语言基础【13】】函数、闭包、方法
文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数(函数作为参数、返回值) 三、匿名函数与闭包1. 匿名函数(Lambda函…...
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
Linux中《基础IO》详细介绍
目录 理解"文件"狭义理解广义理解文件操作的归类认知系统角度文件类别 回顾C文件接口打开文件写文件读文件稍作修改,实现简单cat命令 输出信息到显示器,你有哪些方法stdin & stdout & stderr打开文件的方式 系统⽂件I/O⼀种传递标志位…...
Angular中Webpack与ngx-build-plus 浅学
Webpack 在 Angular 中的概念 Webpack 是一个模块打包工具,用于将多个模块和资源打包成一个或多个文件。在 Angular 项目中,Webpack 负责将 TypeScript、HTML、CSS 等文件打包成浏览器可以理解的 JavaScript 文件。Angular CLI 默认使用 Webpack 进行项目…...
jieba实现和用RNN实现中文分词的区别
Jieba 分词和基于 RNN 的分词在技术路线、实现机制、性能特点上有显著差异,以下是核心对比: 1. 技术路线对比 维度Jieba 分词RNN 神经网络分词范式传统 NLP(规则 统计)深度学习(端到端学习)核心依赖词典…...
