当前位置: 首页 > news >正文

开放世界目标检测 Grounding DINO

开放世界目标检测 Grounding DINO

flyfish

Grounding DINO 是一种开创性的开放集对象检测器,它通过结合基于Transformer的检测器DINO与基于文本描述的预训练技术,实现了可以根据人类输入(如类别名称或指代表达)检测任意对象的功能。这项研究的关键在于将语言引入到原本只能识别预定义类别的封闭集检测器中,以实现对开放集概念的泛化能力。

为了有效融合语言和视觉模态,研究者们在理论上将一个封闭集检测器的工作流程分为三个阶段,并提出了一个紧密融合的解决方案。该方案包括:

  1. 特征增强器:用于强化从图像中提取的特征。
  2. 语言引导的查询选择:根据提供的文本描述来选择哪些区域或对象进行更细致的分析。
  3. 跨模态解码器:用于融合视觉和语言信息,使模型能够理解两者之间的关系。

Grounding DINO 首先在大规模数据集上进行了预训练,这些数据集涵盖了对象检测、接地任务以及图像字幕生成的数据。预训练之后,模型在开放集对象检测和指代对象检测基准测试中进行了评估。结果显示,Grounding DINO 在所有三项设置中都表现出了显著的效果,包括COCO、LVIS、ODinW 和 RefCOCO/+/g 等基准测试。

具体来说,Grounding DINO 在 COCO 零样本检测基准上的平均精度(AP)达到了52.5%,并且在 ODinW 的零样本检测基准上创造了新的记录,平均精度为26.1%。这表明 Grounding DINO 不仅可以很好地处理已知类别的检测任务,还能有效地应对未曾见过的新类别,展现了强大的泛化能力。

此外,研究人员还发布了部分检查点和推理代码,供社区使用和进一步研究,发布地址为 https://github.com/IDEA-Research/GroundingDINO。

这个模型的成功标志着在开放集对象检测领域的一个重要进展,为未来的研究和应用提供了新的可能性。

Introduction

Artificial General Intelligence (AGI) 系统的能力的一个关键指标是其处理开放世界场景的熟练程度。在本文中,我们的目标是开发一个强大的系统,该系统能够根据人类语言输入检测任意对象,这一任务通常被称为开放集对象检测(open-set object detection)。此任务作为通用对象检测器具有广泛的应用前景和巨大潜力,例如可以与生成模型合作进行图像编辑(如图1(b)所示)。

为了实现这个目标,我们设计了强大的开放集对象检测器 Grounding DINO,并遵循以下两个原则:

  1. 基于DINO的紧密模态融合

    • 开放集检测的关键在于通过引入语言来实现对未见过的对象的泛化能力。大多数现有的开放集检测器都是通过将封闭集检测器扩展到开放集场景并结合语言信息发展而来的。
    • 如图2所示,一个封闭集检测器通常包含三个重要模块:用于特征提取的骨干网络(backbone)、用于特征增强的颈部(neck),以及用于区域细化(或边界框预测)的头部(head)。
    • 通过学习语言感知的区域嵌入,封闭集检测器可以被推广以检测新对象,使得每个区域可以在语言感知的语义空间中分类为新的类别。实现这一目标的关键是在颈部和/或头部输出之间使用区域输出和语言特征之间的对比损失(contrastive loss)。
  2. 大规模接地预训练以实现概念泛化

    • 为了让模型能够理解并识别各种不同类型的对象,它需要经历大规模的数据预训练,包括对象检测数据、接地数据和字幕数据等。这种预训练有助于模型学习如何将视觉信息与文本描述关联起来,从而提高对新概念的理解和泛化能力。

Grounding DINO 的设计不仅依赖于深度学习中的Transformer架构(如DINO),还依赖于跨模态(视觉和语言)信息的有效融合。通过这种方式,模型能够在不局限于预定义对象类别的前提下,根据自然语言描述准确地定位和识别图像中的对象,这标志着向更加智能和灵活的计算机视觉系统迈出了重要一步。

此外,文中提到的“对比损失”是一种训练技术,它帮助模型学会区分正样本(即正确的匹配)和负样本(错误的匹配),这对于确保模型正确地关联语言描述和视觉内容至关重要。这种方法使 Grounding DINO 能够有效地从已知类别泛化到未知类别,从而在开放集对象检测任务中表现优异。
执行代码先执行

export HF_ENDPOINT=https://hf-mirror.com
from groundingdino.util.inference import load_model, load_image, predict, annotate
import cv2model = load_model("groundingdino/config/GroundingDINO_SwinT_OGC.py", "weights/groundingdino_swint_ogc.pth")
IMAGE_PATH = "weights/dog-3.jpeg"
TEXT_PROMPT = "chair . person . dog ."
BOX_TRESHOLD = 0.35
TEXT_TRESHOLD = 0.25image_source, image = load_image(IMAGE_PATH)boxes, logits, phrases = predict(model=model,image=image,caption=TEXT_PROMPT,box_threshold=BOX_TRESHOLD,text_threshold=TEXT_TRESHOLD
)annotated_frame = annotate(image_source=image_source, boxes=boxes, logits=logits, phrases=phrases)
cv2.imwrite("annotated_image.jpg", annotated_frame)

问题

GroundingDINO/ms_deform_attn.py", line 53, in forwardoutput = _C.ms_deform_attn_forward(^^
NameError: name '_C' is not defined

解决方法

export CUDA_HOME=/usr/local/cuda-12.4
echo $CUDA_HOME

请添加图片描述

相关文章:

开放世界目标检测 Grounding DINO

开放世界目标检测 Grounding DINO flyfish Grounding DINO 是一种开创性的开放集对象检测器,它通过结合基于Transformer的检测器DINO与基于文本描述的预训练技术,实现了可以根据人类输入(如类别名称或指代表达)检测任意对象的功…...

easegen将教材批量生成可控ppt课件方案设计

之前客户提出过一个需求,就是希望可以将一本教材,快速的转换为教学ppt,虽然通过人工程序脚本的方式,已经实现了该功能,但是因为没有做到通用,每次都需要修改脚本,无法让客户自行完成所有流程&am…...

2002 - Can‘t connect to server on ‘192.168.1.XX‘ (36)

参考:2002 - Can‘t connect to server on ‘192.168.1.XX‘ (36) ubantu20.04,mysql5.7.13 navicat 远程连接数据库报错 2002 - Can’t connect to server on ‘192.168.1.61’ (36) 一、查看数据库服务是否有启动,发现有启动 systemctl status mysql…...

【虚拟机网络拓扑记录】

虚拟机网络拓扑记录 虚拟机安装windows到ubuntu的网络拓扑ubuntu到ubuntu里面的虚拟机网络拓扑windows到ubuntu里面的虚拟机网络拓扑 虚拟机安装 本实验宿主机为windos, 安装vmware,虚拟机操作系统使用ubuntu,然后再在ubuntu上面创建新的虚拟…...

【单片机通讯协议】—— 常用的UART/I2C/SPI等通讯协议的基本原理与时序分析

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、通信基本知识1.1 MCU的参见外设1.2 通信的分类按基本的类型从传输方向上来分 二、UART(串口通讯)2.1 简介2.2 时序图分析2.3 UART的…...

Vue3 核心语法

1. OptionsAPI 与 CompositionAPI Vue2 的API设计是 Options(配置)风格的。Vue3 的API设计是 Composition(组合)风格的。 1.1 Options API 的弊端 Options类型的 API,数据、方法、计算属性等,是分散在&a…...

LLaMA-Factory GLM4-9B-CHAT LoRA 指令微调实战

🤩LLaMA-Factory GLM LoRA 微调 安装llama-factory包 git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git进入下载好的llama-factory,安装依赖包 cd LLaMA-Factory pip install -e ".[torch,metrics]" #上面这步操作会完成…...

GTM023 W.H.Greub线性代数经典教材:Linear Algebra

这本教材是我高中时期入门线性代数的主要教材,我的很多基础知识都来源于这本书,如今看回这本书可以说满满的回忆。这本书可以说,是我读过的内容最为全面且完备的线性代数教材了。而且它的语言风格非常的代数化,没有什么直观可言&a…...

交换机与路由器的区别

交换机和路由器是网络中的两种关键设备,它们各自承担不同的功能,主要区别体现在以下几个方面: 一、工作层次与功能 交换机: 工作层次:交换机主要工作在OSI模型的第二层,即数据链路层。 功能:交…...

springboot502基于WEB的牙科诊所管理系统(论文+源码)_kaic

牙科诊所管理系统的设计与实现 摘要 近年来,信息化管理行业的不断兴起,使得人们的日常生活越来越离不开计算机和互联网技术。首先,根据收集到的用户需求分析,对设计系统有一个初步的认识与了解,确定牙科诊所管理系统的…...

soular使用教程

用 soular 配置你的组织,工作更高效!以下是快速上手的简单步骤:  1. 账号管理 可以对账号信息进行多方面管理,包括分配不同的部门、用户组等,从而确保账号权限和职责的清晰分配。  1.1 用…...

纯div+css+js弹出窗

目的&#xff1a;实现弹出窗、仅关闭弹窗之后才能操作。自适应宽度与高度、当文本内容太多时、添加滚动条效果。 效果图 源码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport"…...

一篇文章学会HTML

目录 页面结构 网页基本标签 图像标签 超链接标签 文本链接 图像链接 锚链接 功能链接 列表 有序列表 无序列表 自定义列表 表格 跨列/跨行 表头 媒体元素 视频 音频 网站的嵌套 表单 表单元素 文本框 单选框 多选框 按钮 下拉框 文本域和文件域 表…...

QGIS二次开发(插件开发)

实习二 QGIS插件开发 2.1 任务要求 a&#xff09;用C语言编写qgis插件&#xff0c;实现带有x/y坐标的文本文件的地图显示。 用文件流fstream操作文本文件&#xff0c;读取其中的坐标数据。基于QgsPlugin相关类派生出一个插件&#xff0c;并加到插件工厂中。基于QgsVectorLaye…...

Web防火墙和下一代防火墙的区别

介绍 客户经常询问“当我已经拥有下一代防火墙&#xff08;NGFW&#xff09;时&#xff0c;为什么需要Web应用程序防火墙&#xff08;WAF&#xff09;&#xff1f;”。本博文的目的是解释两种解决方案之间的区别&#xff0c;重点关注Web应用程序防火墙可以提供的附加值。 什么…...

Linux:alias别名永久有效

一、背景 日常使用bash时候&#xff0c;有些常用的命令参数的组合命令太长&#xff0c;很难记&#xff0c;此时可以利用Linux提供的alias命令生成命令的别名&#xff08;命令的隐射&#xff09;&#xff0c;但是我们会发现&#xff0c;当退出了终端后重新登录就失效了&#xff…...

【递归与回溯深度解析:经典题解精讲(中篇)】—— LeetCode

文章目录 组合目标和组合总和字母大小写全排序优美的排列N皇后 组合 思路&#xff1a;回溯算法 问题要求从 1 到 n 中选出 k 个数的所有组合。 使用回溯算法递归构造解。 每次递归时&#xff0c;记录当前的组合路径&#xff0c;当组合长度达到 k 时&#xff0c;将其加入结果集…...

01.HTTPS的实现原理-HTTPS的概念

01.HTTPS的实现原理-HTTPS的概念 简介1. HTTPS的概念和安全性2. HTTPS的实现原理3. HTTPS和HTTP的区别4. OSI七层协议模型5. SSL和TLS的区别 简介 该系列文章主要讲述了HTTPS协议与HTTP协议的区别&#xff0c;以及HTTPS如何实现安全传输。内容分为三部分&#xff1a;HTTPS的实…...

一文详解MacOS+CLion——构建libtorch机器学习开发环境

对于希望在本地环境中进行深度学习开发的开发者来说&#xff0c;配置合适的工具链是至关重要的一步。本文旨在帮助您在 macOS 操作系统上&#xff0c;利用 CLion IDE 和 PyTorch 的 C依赖库——libtorch&#xff0c;快速搭建起一个高效的开发环境。这里我们将一步步地讲解如何下…...

【LeetCode 面试经典150题】详细题解之哈希表篇

【LeetCode 面试经典150题】详细题解之哈希表篇 1 哈希表的基础1.1 基础概念及实现1.2.1 哈希表的工作原理1.2.2 705.设计哈希集合1.2.3 706.设计哈希映射 1.2 HashMap相关1.2.1 基本操作1.2.2 遍历 1.3 Hashtable1.4 LinkedHashMap1.5 HashSet**1.5.1基本特性**1.5.2 基本方法…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

什么是EULA和DPA

文章目录 EULA&#xff08;End User License Agreement&#xff09;DPA&#xff08;Data Protection Agreement&#xff09;一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA&#xff08;End User License Agreement&#xff09; 定义&#xff1a; EULA即…...

云原生玩法三问:构建自定义开发环境

云原生玩法三问&#xff1a;构建自定义开发环境 引言 临时运维一个古董项目&#xff0c;无文档&#xff0c;无环境&#xff0c;无交接人&#xff0c;俗称三无。 运行设备的环境老&#xff0c;本地环境版本高&#xff0c;ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架&#xff0c;允许使用简单的变成模型跨计算机对大型集群进行分布式处理&#xff08;1.海量的数据存储 2.海量数据的计算&#xff09;Hadoop核心组件 hdfs&#xff08;分布式文件存储系统&#xff09;&a…...

C# 表达式和运算符(求值顺序)

求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如&#xff0c;已知表达式3*52&#xff0c;依照子表达式的求值顺序&#xff0c;有两种可能的结果&#xff0c;如图9-3所示。 如果乘法先执行&#xff0c;结果是17。如果5…...

pikachu靶场通关笔记19 SQL注入02-字符型注入(GET)

目录 一、SQL注入 二、字符型SQL注入 三、字符型注入与数字型注入 四、源码分析 五、渗透实战 1、渗透准备 2、SQL注入探测 &#xff08;1&#xff09;输入单引号 &#xff08;2&#xff09;万能注入语句 3、获取回显列orderby 4、获取数据库名database 5、获取表名…...

在 Spring Boot 中使用 JSP

jsp&#xff1f; 好多年没用了。重新整一下 还费了点时间&#xff0c;记录一下。 项目结构&#xff1a; pom: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://ww…...

深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏

一、引言 在深度学习中&#xff0c;我们训练出的神经网络往往非常庞大&#xff08;比如像 ResNet、YOLOv8、Vision Transformer&#xff09;&#xff0c;虽然精度很高&#xff0c;但“太重”了&#xff0c;运行起来很慢&#xff0c;占用内存大&#xff0c;不适合部署到手机、摄…...

通过MicroSip配置自己的freeswitch服务器进行调试记录

之前用docker安装的freeswitch的&#xff0c;启动是正常的&#xff0c; 但用下面的Microsip连接不上 主要原因有可能一下几个 1、通过下面命令可以看 [rootlocalhost default]# docker exec -it freeswitch fs_cli -x "sofia status profile internal"Name …...