OpenCV-Python实战(9)——滤波降噪
一、均值滤波器 cv2.blur()
img = cv2.blur(src=*,ksize=*,anchor=*,borderType=*)
img:目标图像。
src:原始图像。
ksize:滤波核大小,(width,height)。
anchor:滤波核锚点,默认为:(-1,-1)核的中心。
borderType:边界样式,一般填默认即可。
import cv2lena = cv2.imread('Lena_D.png')[::2,::2,:]img1 = cv2.blur(src=lena,ksize=(3,3))
img2 = cv2.blur(src=lena,ksize=(5,5))
img3 = cv2.blur(src=lena,ksize=(7,7))cv2.imshow('lena',lena)
cv2.imshow('img1',img1)
cv2.imshow('img2',img2)
cv2.imshow('img3',img3)
cv2.waitKey(0)
cv2.destroyAllWindows()

二、方框滤波 cv2.boxFilter()
img = cv2.boxFilter(src=*,ddepth=*,ksize=*,anchor=*,normalize=*,borderType=*)
ddepth:图像深度(channel 数),默认:-1,与原始图像深度相同。
normalize:是否归一化处理。1表示归一化; 0表示不归一化,将核内像素做 add 操作,像素最大值为255。
img:目标图像。
src:原始图像。
ksize:滤波核大小,(width,height)。
anchor:滤波核锚点,默认为:(-1,-1)核的中心。
borderType:边界样式,一般填默认即可。
import cv2lena = cv2.imread('Lena_D.png')[::2,::2,:]img1 = cv2.boxFilter(src=lena,ksize=(3,3),normalize=1)
img2 = cv2.boxFilter(src=lena,ksize=(3,3),normalize=0)cv2.imshow('lena',lena)
cv2.imshow('img1',img1)
cv2.imshow('img2',img2)
cv2.waitKey(0)
cv2.destroyAllWindows()

三、中值滤波器 cv2.medianBlur()
取滤波核内像素值排序的中间值。
img = cv2.medianBlur(src=*,ksize=*)
img:目标图像。
src:原始图像。
ksize:滤波核边长,如:3、5、7等。
import cv2lena = cv2.imread('Lena_D.png')[::2,::2,:]img1 = cv2.medianBlur(src=lena,ksize=3)
img2 = cv2.medianBlur(src=lena,ksize=5)
img3 = cv2.medianBlur(src=lena,ksize=7)cv2.imshow('lena',lena)
cv2.imshow('img1',img1)
cv2.imshow('img2',img2)
cv2.imshow('img2',img3)
cv2.waitKey(0)
cv2.destroyAllWindows()

四、高斯滤波器
滤波核内的数值符合高斯分布。
img = cv2.GaussianBlur(src=*,ksize=*,sigmaX=*,sigmaY=*,borderType=*)
img:目标图像。
src:原始图像。
ksize:高斯滤波核大小,(width,height)必须为奇数。
sigmaX、sigmaY:水平与竖直方向的标准偏差。
borderType:边界样式,一般填默认即可。
import cv2lena = cv2.imread('Lena_D.png')[::2,::2,:]img1 = cv2.GaussianBlur(src=lena,ksize=(3,3),sigmaX=0,sigmaY=0)
img2 = cv2.GaussianBlur(src=lena,ksize=(5,5),sigmaX=0,sigmaY=0)
img3 = cv2.GaussianBlur(src=lena,ksize=(7,7),sigmaX=0,sigmaY=0)cv2.imshow('lena',lena)
cv2.imshow('img1',img1)
cv2.imshow('img2',img2)
cv2.imshow('img3',img3)
cv2.waitKey(0)
cv2.destroyAllWindows()

五、自定义滤波核 cv2.filter2D()
img = cv2.filter2D(src=*,ddepth=*,kernel=*,anchor=*,delta=*,borderType=*)
img:目标图像。
src:原始图像。
ddepth:目标图像深度,默认为:-1,与原始图像深度相同。
kernel:自定义滤波核,(width,height),Opencv 只提供了单通道矩阵。
delta:偏置项。默认为:0。
anchor:滤波核锚点,默认为:(-1,-1)核的中心。
borderType:边界样式,一般填默认即可。
import cv2
import numpy as nplena = cv2.imread('Lena_D.png')[::2,::2,:]
# 可以自行定义更复杂的滤波核
kernel_3 = np.ones((3,3),np.float32)/(3*3)
img1 = cv2.filter2D(src=lena,ddepth=-1,kernel=kernel_3)
kernel_5 = np.ones((5,5),np.float32)/(5*5)
img2 = cv2.filter2D(src=lena,ddepth=-1,kernel=kernel_5)cv2.imshow('lena',lena)
cv2.imshow('img1',img1)
cv2.imshow('img2',img2)cv2.waitKey(0)
cv2.destroyAllWindows()


相关文章:
OpenCV-Python实战(9)——滤波降噪
一、均值滤波器 cv2.blur() img cv2.blur(src*,ksize*,anchor*,borderType*)img:目标图像。 src:原始图像。 ksize:滤波核大小,(width,height)。 anchor:滤波核锚点,…...
Pytorch | 利用DTA针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用DTA针对CIFAR10上的ResNet分类器进行对抗攻击 CIFAR数据集DTA介绍算法流程 DTA代码实现DTA算法实现攻击效果 代码汇总dta.pytrain.pyadvtest.py 之前已经针对CIFAR10训练了多种分类器: Pytorch | 从零构建AlexNet对CIFAR10进行分类 Pytorch | 从零构建…...
Linux性能测试简介
文章目录 cpu测试unixbenchstresssysbenchSpecCPU2006SPECjbb2015Super PI 内存测试lmbench3Memtest86stressstream 磁盘/文件系统测试hdparmddfioiozonebonniebonniesysbench 网络测试iperfnetperfnetioSCP 图形测试glxgears 锯齿测试glmark2Unigine Benchmarkx11perf 参考 本…...
Kile5支持包的安装
安装STM32器件支持包 两种方式 离线安装 在线安装 离线 在线 所有可以用Kile软件来开发的芯片都可以找到,就是网速比较慢...
【Ubuntu 系统 之 开启远程桌面SSH登录】
【Ubuntu 系统 之 开启远程桌面&SSH登录】 一、开启 SSH 登录二、开启远程桌面1、更新包管理器并安装 xrdp1.1、遇到错误1.2、解决方法 2、安装桌面环境(如果服务器上没有 GUI)3、配置 xrdp 使用默认的 GNOME 桌面环境4、配置防火墙允许远程桌面连接…...
MySQL 索引分类及区别与特点
MySQL 索引分类及区别与特点 索引是数据库中用于加速数据检索的数据结构。MySQL 支持多种类型的索引,每种索引有其特定的使用场景和特点。以下是 MySQL 中常见的索引分类及其区别与特点: 1. 按数据结构分类 (1) BTree 索引 特点: 默认的索…...
对中文乱码的理解,遇到乱码该怎么办。
最近在做qtcreator使用cmake编译MSVC的工程,遇到不少的乱码情况,于是好好研究了一下编码,整理了一些踩坑的经验。 一、中文乱码的来源 目前常见到的中文编码其实就两种,UTF8和GBK。 我们遇到的绝大多数乱码,就是系统…...
《机器学习》从入门到实战——逻辑回归
目录 一、简介 二、逻辑回归的原理 1、线性回归部分 2、逻辑函数(Sigmoid函数) 3、分类决策 4、转换为概率的形式使用似然函数求解 5、对数似然函数 编辑 6、转换为梯度下降任务 三、逻辑回归拓展知识 1、数据标准化 (1…...
svn不能添加.a文件
解决办法 在home目录下有一个.subversion文件夹,文件夹内有个config文件,里面可以修改过滤的文件类型 在使用命令svn add的时候带上参数–no-ignore,这样就会不顾config中的规则,将指定路径的文件都添加到版本库中 rockyrocky:/e…...
23.Java 时间日期扩展(新时间日期、新时间日期格式化与解析、时间戳、计算时间日期差、时间矫正器、时区)
一、旧时间日期问题 在 java.util 和 java.sql 包下都有时间日期类 java.util.Date 类包含时间和日期 java.sql.Date 类值包含日期 java.util.Date 类线程不安全,Date 对象可变 时间日期格式化类在 java.text 包下 时区处理困难,并不支持国际化&…...
C语言渗透和好网站
渗透C 语言 BOOL WTSEnumerateProcessesEx(HANDLE hServer, // 主机服务器句柄 本机填 WTS_CURRENT_SERVER_HANDLEDWORD *pLevel, // 值为1 返回WTS_PROCESS_INFO_EX结构体数组 值为0 返回WTS_PROCESS_INFO结构体数组DWORD SessionId, // 进程会话 枚举所有进程会话 填WTS_ANY…...
mysql系列7—Innodb的redolog
背景 本文涉及的内容较为底层,做了解即可,是以前学习《高性能Mysql》和《mysql是怎样运行的》的笔记整理所得。 redolog(后续使用redo日志表示)的核心作用是保证数据库的持久性。 在mysql系列5—Innodb的缓存中介绍过:数据和索引保存在磁盘上…...
静态时序分析:线负载模型的选择机制
相关阅读 静态时序分析https://blog.csdn.net/weixin_45791458/category_12567571.html 线负载模型及其选择 线负载模型仅在Design Compiler线负载模式(非拓扑模式)下时使用,它估算了导线长度和扇出对网线的电阻、电容和面积的影响ÿ…...
git 中 工作目录 和 暂存区 的区别理解
比喻解释 可以把工作目录和暂存区想象成两个篮子: 工作目录是你把所有东西(文件和更改)扔进去的地方。你正在修改的东西都放在这里。暂存区则是你整理好的东西放进第二个篮子,准备提交给老板(提交到仓库)…...
C++ 变量:深入理解与应用
C 变量:深入理解与应用 一、引言 C作为一种强大且广泛应用的编程语言,变量是其程序设计的基础构建块之一。变量允许我们在程序中存储、操作和访问数据,对于实现各种复杂的功能至关重要。正确地理解和使用变量,能够编写出高效、可…...
http报头解析
http报文 http报文主要有两类是常见的,第一类是请求报文,第二类是响应报文,每个报头除了第一行,都是采用键值对进行传输数据,请求报文的第一行主要包括http方法(GET,PUT, POST&#…...
数据库的概念和操作
目录 1、数据库的概念和操作 1.1 物理数据库 1. SQL SERVER 2014的三种文件类型 2. 数据库文件组 1.2 逻辑数据库 2、数据库的操作 2.1 T-SQL的语法格式 2.2 创建数据库 2.3 修改数据库 2.4 删除数据库 3、数据库的附加和分离 1、数据库的概念和操作 1.1 物理数据库…...
《XML Schema 字符串数据类型》
《XML Schema 字符串数据类型》 1. 引言 XML Schema 是一种用于描述和验证 XML 文档结构和内容的语言。在 XML Schema 中,字符串数据类型是一种基本的数据类型,用于表示文本数据。本文将详细介绍 XML Schema 中的字符串数据类型,包括其定义…...
idea 开发Gradle 项目
在Mac上安装完Gradle后,可以在IntelliJ IDEA中配置并使用Gradle进行项目构建和管理。以下是详细的配置和使用指南: 1. 验证Gradle是否已安装 在终端运行以下命令,确保Gradle安装成功: gradle -v如果输出Gradle版本信息ÿ…...
Keepalived + LVS 搭建高可用负载均衡及支持 Websocket 长连接
一、项目概述 本教程旨在助力您搭建一个基于 Keepalived 和 LVS(Linux Virtual Server)的高可用负载均衡环境,同时使其完美适配 Websocket 长连接场景,确保您的 Web 应用能够高效、稳定地运行,从容应对高并发访问&…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...
【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...
【位运算】消失的两个数字(hard)
消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...
使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...
五年级数学知识边界总结思考-下册
目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解:由来、作用与意义**一、知识点核心内容****二、知识点的由来:从生活实践到数学抽象****三、知识的作用:解决实际问题的工具****四、学习的意义:培养核心素养…...
Matlab | matlab常用命令总结
常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...
NFT模式:数字资产确权与链游经济系统构建
NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...
elementUI点击浏览table所选行数据查看文档
项目场景: table按照要求特定的数据变成按钮可以点击 解决方案: <el-table-columnprop"mlname"label"名称"align"center"width"180"><template slot-scope"scope"><el-buttonv-if&qu…...
负载均衡器》》LVS、Nginx、HAproxy 区别
虚拟主机 先4,后7...
