OpenCV-Python实战(9)——滤波降噪
一、均值滤波器 cv2.blur()
img = cv2.blur(src=*,ksize=*,anchor=*,borderType=*)
img:目标图像。
src:原始图像。
ksize:滤波核大小,(width,height)。
anchor:滤波核锚点,默认为:(-1,-1)核的中心。
borderType:边界样式,一般填默认即可。
import cv2lena = cv2.imread('Lena_D.png')[::2,::2,:]img1 = cv2.blur(src=lena,ksize=(3,3))
img2 = cv2.blur(src=lena,ksize=(5,5))
img3 = cv2.blur(src=lena,ksize=(7,7))cv2.imshow('lena',lena)
cv2.imshow('img1',img1)
cv2.imshow('img2',img2)
cv2.imshow('img3',img3)
cv2.waitKey(0)
cv2.destroyAllWindows()
二、方框滤波 cv2.boxFilter()
img = cv2.boxFilter(src=*,ddepth=*,ksize=*,anchor=*,normalize=*,borderType=*)
ddepth:图像深度(channel 数),默认:-1,与原始图像深度相同。
normalize:是否归一化处理。1表示归一化; 0表示不归一化,将核内像素做 add 操作,像素最大值为255。
img:目标图像。
src:原始图像。
ksize:滤波核大小,(width,height)。
anchor:滤波核锚点,默认为:(-1,-1)核的中心。
borderType:边界样式,一般填默认即可。
import cv2lena = cv2.imread('Lena_D.png')[::2,::2,:]img1 = cv2.boxFilter(src=lena,ksize=(3,3),normalize=1)
img2 = cv2.boxFilter(src=lena,ksize=(3,3),normalize=0)cv2.imshow('lena',lena)
cv2.imshow('img1',img1)
cv2.imshow('img2',img2)
cv2.waitKey(0)
cv2.destroyAllWindows()
三、中值滤波器 cv2.medianBlur()
取滤波核内像素值排序的中间值。
img = cv2.medianBlur(src=*,ksize=*)
img:目标图像。
src:原始图像。
ksize:滤波核边长,如:3、5、7等。
import cv2lena = cv2.imread('Lena_D.png')[::2,::2,:]img1 = cv2.medianBlur(src=lena,ksize=3)
img2 = cv2.medianBlur(src=lena,ksize=5)
img3 = cv2.medianBlur(src=lena,ksize=7)cv2.imshow('lena',lena)
cv2.imshow('img1',img1)
cv2.imshow('img2',img2)
cv2.imshow('img2',img3)
cv2.waitKey(0)
cv2.destroyAllWindows()
四、高斯滤波器
滤波核内的数值符合高斯分布。
img = cv2.GaussianBlur(src=*,ksize=*,sigmaX=*,sigmaY=*,borderType=*)
img:目标图像。
src:原始图像。
ksize:高斯滤波核大小,(width,height)必须为奇数。
sigmaX、sigmaY:水平与竖直方向的标准偏差。
borderType:边界样式,一般填默认即可。
import cv2lena = cv2.imread('Lena_D.png')[::2,::2,:]img1 = cv2.GaussianBlur(src=lena,ksize=(3,3),sigmaX=0,sigmaY=0)
img2 = cv2.GaussianBlur(src=lena,ksize=(5,5),sigmaX=0,sigmaY=0)
img3 = cv2.GaussianBlur(src=lena,ksize=(7,7),sigmaX=0,sigmaY=0)cv2.imshow('lena',lena)
cv2.imshow('img1',img1)
cv2.imshow('img2',img2)
cv2.imshow('img3',img3)
cv2.waitKey(0)
cv2.destroyAllWindows()
五、自定义滤波核 cv2.filter2D()
img = cv2.filter2D(src=*,ddepth=*,kernel=*,anchor=*,delta=*,borderType=*)
img:目标图像。
src:原始图像。
ddepth:目标图像深度,默认为:-1,与原始图像深度相同。
kernel:自定义滤波核,(width,height),Opencv 只提供了单通道矩阵。
delta:偏置项。默认为:0。
anchor:滤波核锚点,默认为:(-1,-1)核的中心。
borderType:边界样式,一般填默认即可。
import cv2
import numpy as nplena = cv2.imread('Lena_D.png')[::2,::2,:]
# 可以自行定义更复杂的滤波核
kernel_3 = np.ones((3,3),np.float32)/(3*3)
img1 = cv2.filter2D(src=lena,ddepth=-1,kernel=kernel_3)
kernel_5 = np.ones((5,5),np.float32)/(5*5)
img2 = cv2.filter2D(src=lena,ddepth=-1,kernel=kernel_5)cv2.imshow('lena',lena)
cv2.imshow('img1',img1)
cv2.imshow('img2',img2)cv2.waitKey(0)
cv2.destroyAllWindows()
相关文章:

OpenCV-Python实战(9)——滤波降噪
一、均值滤波器 cv2.blur() img cv2.blur(src*,ksize*,anchor*,borderType*)img:目标图像。 src:原始图像。 ksize:滤波核大小,(width,height)。 anchor:滤波核锚点,…...

Pytorch | 利用DTA针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用DTA针对CIFAR10上的ResNet分类器进行对抗攻击 CIFAR数据集DTA介绍算法流程 DTA代码实现DTA算法实现攻击效果 代码汇总dta.pytrain.pyadvtest.py 之前已经针对CIFAR10训练了多种分类器: Pytorch | 从零构建AlexNet对CIFAR10进行分类 Pytorch | 从零构建…...
Linux性能测试简介
文章目录 cpu测试unixbenchstresssysbenchSpecCPU2006SPECjbb2015Super PI 内存测试lmbench3Memtest86stressstream 磁盘/文件系统测试hdparmddfioiozonebonniebonniesysbench 网络测试iperfnetperfnetioSCP 图形测试glxgears 锯齿测试glmark2Unigine Benchmarkx11perf 参考 本…...

Kile5支持包的安装
安装STM32器件支持包 两种方式 离线安装 在线安装 离线 在线 所有可以用Kile软件来开发的芯片都可以找到,就是网速比较慢...
【Ubuntu 系统 之 开启远程桌面SSH登录】
【Ubuntu 系统 之 开启远程桌面&SSH登录】 一、开启 SSH 登录二、开启远程桌面1、更新包管理器并安装 xrdp1.1、遇到错误1.2、解决方法 2、安装桌面环境(如果服务器上没有 GUI)3、配置 xrdp 使用默认的 GNOME 桌面环境4、配置防火墙允许远程桌面连接…...
MySQL 索引分类及区别与特点
MySQL 索引分类及区别与特点 索引是数据库中用于加速数据检索的数据结构。MySQL 支持多种类型的索引,每种索引有其特定的使用场景和特点。以下是 MySQL 中常见的索引分类及其区别与特点: 1. 按数据结构分类 (1) BTree 索引 特点: 默认的索…...

对中文乱码的理解,遇到乱码该怎么办。
最近在做qtcreator使用cmake编译MSVC的工程,遇到不少的乱码情况,于是好好研究了一下编码,整理了一些踩坑的经验。 一、中文乱码的来源 目前常见到的中文编码其实就两种,UTF8和GBK。 我们遇到的绝大多数乱码,就是系统…...

《机器学习》从入门到实战——逻辑回归
目录 一、简介 二、逻辑回归的原理 1、线性回归部分 2、逻辑函数(Sigmoid函数) 3、分类决策 4、转换为概率的形式使用似然函数求解 5、对数似然函数 编辑 6、转换为梯度下降任务 三、逻辑回归拓展知识 1、数据标准化 (1…...

svn不能添加.a文件
解决办法 在home目录下有一个.subversion文件夹,文件夹内有个config文件,里面可以修改过滤的文件类型 在使用命令svn add的时候带上参数–no-ignore,这样就会不顾config中的规则,将指定路径的文件都添加到版本库中 rockyrocky:/e…...
23.Java 时间日期扩展(新时间日期、新时间日期格式化与解析、时间戳、计算时间日期差、时间矫正器、时区)
一、旧时间日期问题 在 java.util 和 java.sql 包下都有时间日期类 java.util.Date 类包含时间和日期 java.sql.Date 类值包含日期 java.util.Date 类线程不安全,Date 对象可变 时间日期格式化类在 java.text 包下 时区处理困难,并不支持国际化&…...
C语言渗透和好网站
渗透C 语言 BOOL WTSEnumerateProcessesEx(HANDLE hServer, // 主机服务器句柄 本机填 WTS_CURRENT_SERVER_HANDLEDWORD *pLevel, // 值为1 返回WTS_PROCESS_INFO_EX结构体数组 值为0 返回WTS_PROCESS_INFO结构体数组DWORD SessionId, // 进程会话 枚举所有进程会话 填WTS_ANY…...

mysql系列7—Innodb的redolog
背景 本文涉及的内容较为底层,做了解即可,是以前学习《高性能Mysql》和《mysql是怎样运行的》的笔记整理所得。 redolog(后续使用redo日志表示)的核心作用是保证数据库的持久性。 在mysql系列5—Innodb的缓存中介绍过:数据和索引保存在磁盘上…...

静态时序分析:线负载模型的选择机制
相关阅读 静态时序分析https://blog.csdn.net/weixin_45791458/category_12567571.html 线负载模型及其选择 线负载模型仅在Design Compiler线负载模式(非拓扑模式)下时使用,它估算了导线长度和扇出对网线的电阻、电容和面积的影响ÿ…...

git 中 工作目录 和 暂存区 的区别理解
比喻解释 可以把工作目录和暂存区想象成两个篮子: 工作目录是你把所有东西(文件和更改)扔进去的地方。你正在修改的东西都放在这里。暂存区则是你整理好的东西放进第二个篮子,准备提交给老板(提交到仓库)…...
C++ 变量:深入理解与应用
C 变量:深入理解与应用 一、引言 C作为一种强大且广泛应用的编程语言,变量是其程序设计的基础构建块之一。变量允许我们在程序中存储、操作和访问数据,对于实现各种复杂的功能至关重要。正确地理解和使用变量,能够编写出高效、可…...

http报头解析
http报文 http报文主要有两类是常见的,第一类是请求报文,第二类是响应报文,每个报头除了第一行,都是采用键值对进行传输数据,请求报文的第一行主要包括http方法(GET,PUT, POST&#…...

数据库的概念和操作
目录 1、数据库的概念和操作 1.1 物理数据库 1. SQL SERVER 2014的三种文件类型 2. 数据库文件组 1.2 逻辑数据库 2、数据库的操作 2.1 T-SQL的语法格式 2.2 创建数据库 2.3 修改数据库 2.4 删除数据库 3、数据库的附加和分离 1、数据库的概念和操作 1.1 物理数据库…...
《XML Schema 字符串数据类型》
《XML Schema 字符串数据类型》 1. 引言 XML Schema 是一种用于描述和验证 XML 文档结构和内容的语言。在 XML Schema 中,字符串数据类型是一种基本的数据类型,用于表示文本数据。本文将详细介绍 XML Schema 中的字符串数据类型,包括其定义…...
idea 开发Gradle 项目
在Mac上安装完Gradle后,可以在IntelliJ IDEA中配置并使用Gradle进行项目构建和管理。以下是详细的配置和使用指南: 1. 验证Gradle是否已安装 在终端运行以下命令,确保Gradle安装成功: gradle -v如果输出Gradle版本信息ÿ…...
Keepalived + LVS 搭建高可用负载均衡及支持 Websocket 长连接
一、项目概述 本教程旨在助力您搭建一个基于 Keepalived 和 LVS(Linux Virtual Server)的高可用负载均衡环境,同时使其完美适配 Websocket 长连接场景,确保您的 Web 应用能够高效、稳定地运行,从容应对高并发访问&…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论
路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

AI语音助手的Python实现
引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...

springboot 日志类切面,接口成功记录日志,失败不记录
springboot 日志类切面,接口成功记录日志,失败不记录 自定义一个注解方法 import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target;/***…...
DiscuzX3.5发帖json api
参考文章:PHP实现独立Discuz站外发帖(直连操作数据库)_discuz 发帖api-CSDN博客 简单改造了一下,适配我自己的需求 有一个站点存在多个采集站,我想通过主站拿标题,采集站拿内容 使用到的sql如下 CREATE TABLE pre_forum_post_…...
面试高频问题
文章目录 🚀 消息队列核心技术揭秘:从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"?性能背后的秘密1.1 顺序写入与零拷贝:性能的双引擎1.2 分区并行:数据的"八车道高速公路"1.3 页缓存与批量处理…...

Python训练营-Day26-函数专题1:函数定义与参数
题目1:计算圆的面积 任务: 编写一个名为 calculate_circle_area 的函数,该函数接收圆的半径 radius 作为参数,并返回圆的面积。圆的面积 π * radius (可以使用 math.pi 作为 π 的值)要求:函数接收一个位置参数 radi…...

快速排序算法改进:随机快排-荷兰国旗划分详解
随机快速排序-荷兰国旗划分算法详解 一、基础知识回顾1.1 快速排序简介1.2 荷兰国旗问题 二、随机快排 - 荷兰国旗划分原理2.1 随机化枢轴选择2.2 荷兰国旗划分过程2.3 结合随机快排与荷兰国旗划分 三、代码实现3.1 Python实现3.2 Java实现3.3 C实现 四、性能分析4.1 时间复杂度…...
Docker环境下安装 Elasticsearch + IK 分词器 + Pinyin插件 + Kibana(适配7.10.1)
做RAG自己打算使用esmilvus自己开发一个,安装时好像网上没有比较新的安装方法,然后找了个旧的方法对应试试: 🚀 本文将手把手教你在 Docker 环境中部署 Elasticsearch 7.10.1 IK分词器 拼音插件 Kibana,适配中文搜索…...