当前位置: 首页 > news >正文

【Rust自学】8.2. Vector + Enum的应用

8.2.0. 本章内容

第八章主要讲的是Rust中常见的集合。Rust中提供了很多集合类型的数据结构,这些集合可以包含很多值。但是第八章所讲的集合与数组和元组有所不同。

第八章中的集合是存储在堆内存上而非栈内存上的,这也意味着这些集合的数据大小无需在编译时就确定,在运行时它们可以动态地变大或变小。

本章主要会讲三种集合:Vector(本文)、String和HashMap

喜欢的话别忘了点赞、收藏加关注哦(加关注即可阅读全文),对接下来的教程有兴趣的可以关注专栏。谢谢喵!(=・ω・=)

8.2.1. Vector和enum的互补

虽然Vector它可以动态地变大或变小,但是它里面元素的数据类型是必须一样的,但有的时候我们需要存储不同类型的数据在堆内存上,那这种情况怎么办呢?

还记得6.1. 定义枚举中介绍的枚举类型吗,枚举的变体是可以附加数据的,而且这些附加的数据可以是不同类型。最主要的是,枚举类型的变体都是定义在同一个枚举类型下的,也就是说所有的变体都是同一个类型,就可以被存储到Vector中。

这样就可以通过枚举实现了在Vector里存储不同数据类型的数据的功能。

8.2.2. Vector + enum

来看一个实际使用Vector+枚举类型的例子:

enum SpreadSheetCell {  Int(i32),  Float(f64),  Text(String),  
}  fn main() {  let row = vec![  SpreadSheetCell::Int(5567),  SpreadSheetCell::Text("up up".to_string()),  SpreadSheetCell::Float(114.514),  ];  
}

这个例子实现了模拟Excel单元格的功能,单元格内存储的只能是是整数、浮点数和字符串其中之一,所以声明了SpreadSheetCell这个枚举类型,拥有3个变体,分别用于存储整数(Int)、浮点数(Float)和字符串(String)。

main函数中,声明了变量row用于存储一行的单元格,因为一行的单元格数量不确定,所以需要Vector来存储,在这里初始化时有三个单元格,第一个存储整数6657,第二个放了字符串"up up",第三个放了浮点数114.514。

通过这个例子,我们可以看到通过使用可附加数据的枚举类型,就可以变相地在Vector里存放不同类型的数据。

那么Rust为什么在编译的时候就需要知道Vector里的元素的类型呢?因为这样Rust才能确定堆内存上到底需要多少内存来容纳这个Vector。除此之外,如果允许在Vector上存储不同类型的元素,那么在对Vector上的元素进行批量操作时,有些操作可能在某些类型上是合法的而在某些类型上不是,程序就会出错。而这种枚举类型配合match表达式的方式使得Rust能在编译时提前知晓所有的可能情况,在运行时就可以正确处理了。

在这个例子上Vector实现了存储不同的数据类型,但前提条件是我们必须知道到底有哪些数据类型(或者叫知道详尽的数据类型),否则的话,如果这个类型有无限种可能(或者叫不详尽),那么使用枚举也没有办法,连枚举都定义不出来。针对这种情况,Rust提供了trait,但这个得等到后面讲了。

相关文章:

【Rust自学】8.2. Vector + Enum的应用

8.2.0. 本章内容 第八章主要讲的是Rust中常见的集合。Rust中提供了很多集合类型的数据结构,这些集合可以包含很多值。但是第八章所讲的集合与数组和元组有所不同。 第八章中的集合是存储在堆内存上而非栈内存上的,这也意味着这些集合的数据大小无需在编…...

攻防世界web第十题Web_python_template_injection

这是题目,从题目上看是一个python模板注入类型的题目。 首先测试是否存在模板注入漏洞,构造http://61.147.171.105:57423/{{config}} 得到 说明存在模板注入漏洞,继续注入 构造http://61.147.171.105:57423/{{‘’.class.mro}}: 得到 再构造…...

vmware 修改Ubuntu终端字体大小

1. 2、 3、 4、 5、 6、点击select...

API 设计:从基础到最佳实践

https://levelup.gitconnected.com/api-design-101-from-basics-to-best-practices-a0261cdf8886 在本次深入研究中,我们将从基础开始,逐步了解 API 设计,并逐步实现定义卓越 API 的最佳实践。 作为开发人员,您可能熟悉其中的许多…...

ROUGE指标在自然语言处理中的应用:从理论到实践

引言 你是否曾经遇到过机器生成的文本摘要与原文内容不符的情况?或者在使用机器翻译时,发现译文虽然“看起来”正确,但语义却与原文相差甚远?在自然语言处理(NLP)领域,如何科学地评估生成文本的…...

GraalVM:云原生时代的Java虚拟机

1. 概述 GraalVM是由Oracle公司开发的一款高性能、多语言的虚拟机平台。它不仅兼容传统的JVM字节码执行,还引入了即时编译(JIT)技术的革新,以及对多种编程语言的支持。GraalVM旨在通过提供更高效的执行环境来满足云计算环境中日益…...

Linux 信号集与信号掩码

目录 一、引言 二、信号集是什么 三、信号集关键函数 1.信号集的创建与初始化 2.信号的添加与删除 3.信号集的阻塞与解除阻塞 四、信号集实际应用场景 五、信号掩码的作用 六、信号掩码相关函数 1.sigprocmask 函数 2.sigemptyset 和 sigfillset 函数 七、信号掩码注…...

如何设置Edge浏览器访问软件

使用Edge浏览器访问分销ERP A\V系列软件时会出现各种报错,如何设置Edge浏览器使其正常访问,请看下面的具体操作。 一、打开Edge浏览器,点击右上角的 设置及其他,如图: 二、在弹出界面中,点击 扩展&#xff…...

DL笔记:旋转编码RoPE

1 背景 由于计算资源限制,目前的LLM大多在较短的上下文长度中进行训练,在推理中,如果超出预训练的长度,模型的性能将会显著降低 ——>需要一个可提供外推性的位置编码最经典的绝对位置编码就是原始Transformer中的那个sinusoi…...

C语言自定义类型与文件操作

构造类型 枚举类型 若定义不相关的常量使用宏定义;若定义一组相关的常量使用枚举。switch中case后访问的就是枚举。 定义: 我们一般情况下定义常量使用宏定义(#define),宏定义适合没有关联关系的常量;但有时需要对一组有关联关系…...

《计算机网络A》单选题-复习题库解析-3

目录 106、MAN通常是指( ) 107、下列因素中,不会影响信道数据传输速率的是( ) 108、以太网交换机进行转发决策时使用的PDU地址是( ) 109、下列机制中,可以解决因数据帧丢失而…...

VM虚拟机配置ubuntu网络

目录 桥接模式 NAT模式 桥接模式 特点:ubuntu的IP地址与主机IP的ip地址不同 第一部分:VM虚拟机给ubuntu的网络适配器,调为桥接模式 第二部分:保证所桥接的网络可以上网 第三部分:ubuntu使用DHCP(默认&…...

【每日学点鸿蒙知识】Web高度适配、变量声明规范、动画取消、签名文件、包体积优化相关

1、HarmonyOS Web页面高度适配? 在Web页面设置高度100%时,发现和Web控件的高度不一致,这个需要设置什么可以达到页面高度和Web容器高度一致 目前只支持两种web布局模式,分别为Web布局跟随系统WebLayoutMode.NONE和Web基于页面大…...

uniapp使用ucharts组件

1.ucharts准备 有两种使用方式:一种是在uni的插件市场下载(组件化开发)。一种是手动引入ucharts包。官方都封装好组件了,我们不用岂不是浪费。 直接去dcloud插件市场(DCloud 插件市场)找,第一…...

LabVIEW工程师的未来发展

对于LabVIEW工程师以及更广义的编程从业者(包括“高级民工”码农)来说,随着AI技术和软件编程的逐步成熟,确实面临一些新的挑战和机遇。以下是对此问题的深入分析和未来方向的建议: 现状分析:技术过剩与竞争…...

java的bio、nio、aio 以及操作系统的select、poll、epoll

在 Java 和其他编程语言中,I/O 模型的选择对网络应用的性能和可扩展性有着重要影响。以下是 BIO(Blocking I/O)、NIO(Non-blocking I/O)、AIO(Asynchronous I/O),以及操作系统级别的…...

2024 年发布的 Android AI 手机都有什么功能?

大家好,我是拭心。 2024 年是 AI 快速发展的一年,这一年 AI 再获诺贝尔奖,微软/苹果/谷歌等巨头纷纷拥抱 AI,多款强大的 AI 手机进入我们的生活。 今年全球 16% 的智能手机出货量为 AI 手机,到 2028 年,这…...

RLHF,LM模型

LLM(Large Language Model) RLHF(Reinforcement Learning from Human Feedback),即以强化学习方式依据人类反馈优化语言模型。 RLHF思想:使用强化学习的方式直接优化带有人类反馈的语言模型。RLHF使得在一般文本数据语料库上训练的语言模型能与复杂的人类价值观对齐。 R…...

【机器学习】工业 4.0 下机器学习如何驱动智能制造升级

我的个人主页 我的领域:人工智能篇,希望能帮助到大家!!!👍点赞 收藏❤ 随着科技的飞速发展,工业 4.0 浪潮正席卷全球制造业,而机器学习作为这一变革中的关键技术,正以前…...

REST与RPC的对比:从性能到扩展性的全面分析

在微服务架构中,服务间通信是核心问题之一。常见的两种通信方式是REST(Representational State Transfer)和RPC(Remote Procedure Call)。它们各有优缺点,适用于不同场景。本文将从性能、扩展性、兼容性和开…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

vscode(仍待补充)

写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh&#xff1f; debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

dedecms 织梦自定义表单留言增加ajax验证码功能

增加ajax功能模块&#xff0c;用户不点击提交按钮&#xff0c;只要输入框失去焦点&#xff0c;就会提前提示验证码是否正确。 一&#xff0c;模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...