【Rust自学】8.2. Vector + Enum的应用
8.2.0. 本章内容
第八章主要讲的是Rust中常见的集合。Rust中提供了很多集合类型的数据结构,这些集合可以包含很多值。但是第八章所讲的集合与数组和元组有所不同。
第八章中的集合是存储在堆内存上而非栈内存上的,这也意味着这些集合的数据大小无需在编译时就确定,在运行时它们可以动态地变大或变小。
本章主要会讲三种集合:Vector(本文)、String和HashMap
喜欢的话别忘了点赞、收藏加关注哦(加关注即可阅读全文),对接下来的教程有兴趣的可以关注专栏。谢谢喵!(=・ω・=)
8.2.1. Vector和enum的互补
虽然Vector
它可以动态地变大或变小,但是它里面元素的数据类型是必须一样的,但有的时候我们需要存储不同类型的数据在堆内存上,那这种情况怎么办呢?
还记得6.1. 定义枚举中介绍的枚举类型吗,枚举的变体是可以附加数据的,而且这些附加的数据可以是不同类型。最主要的是,枚举类型的变体都是定义在同一个枚举类型下的,也就是说所有的变体都是同一个类型,就可以被存储到Vector
中。
这样就可以通过枚举实现了在Vector
里存储不同数据类型的数据的功能。
8.2.2. Vector + enum
来看一个实际使用Vector
+枚举类型的例子:
enum SpreadSheetCell { Int(i32), Float(f64), Text(String),
} fn main() { let row = vec![ SpreadSheetCell::Int(5567), SpreadSheetCell::Text("up up".to_string()), SpreadSheetCell::Float(114.514), ];
}
这个例子实现了模拟Excel
单元格的功能,单元格内存储的只能是是整数、浮点数和字符串其中之一,所以声明了SpreadSheetCell
这个枚举类型,拥有3个变体,分别用于存储整数(Int
)、浮点数(Float
)和字符串(String
)。
在main
函数中,声明了变量row
用于存储一行的单元格,因为一行的单元格数量不确定,所以需要Vector
来存储,在这里初始化时有三个单元格,第一个存储整数6657,第二个放了字符串"up up",第三个放了浮点数114.514。
通过这个例子,我们可以看到通过使用可附加数据的枚举类型,就可以变相地在Vector
里存放不同类型的数据。
那么Rust为什么在编译的时候就需要知道Vector
里的元素的类型呢?因为这样Rust才能确定堆内存上到底需要多少内存来容纳这个Vector
。除此之外,如果允许在Vector
上存储不同类型的元素,那么在对Vector
上的元素进行批量操作时,有些操作可能在某些类型上是合法的而在某些类型上不是,程序就会出错。而这种枚举类型配合match
表达式的方式使得Rust能在编译时提前知晓所有的可能情况,在运行时就可以正确处理了。
在这个例子上Vector
实现了存储不同的数据类型,但前提条件是我们必须知道到底有哪些数据类型(或者叫知道详尽的数据类型),否则的话,如果这个类型有无限种可能(或者叫不详尽),那么使用枚举也没有办法,连枚举都定义不出来。针对这种情况,Rust提供了trait,但这个得等到后面讲了。
相关文章:
【Rust自学】8.2. Vector + Enum的应用
8.2.0. 本章内容 第八章主要讲的是Rust中常见的集合。Rust中提供了很多集合类型的数据结构,这些集合可以包含很多值。但是第八章所讲的集合与数组和元组有所不同。 第八章中的集合是存储在堆内存上而非栈内存上的,这也意味着这些集合的数据大小无需在编…...

攻防世界web第十题Web_python_template_injection
这是题目,从题目上看是一个python模板注入类型的题目。 首先测试是否存在模板注入漏洞,构造http://61.147.171.105:57423/{{config}} 得到 说明存在模板注入漏洞,继续注入 构造http://61.147.171.105:57423/{{‘’.class.mro}}: 得到 再构造…...

vmware 修改Ubuntu终端字体大小
1. 2、 3、 4、 5、 6、点击select...

API 设计:从基础到最佳实践
https://levelup.gitconnected.com/api-design-101-from-basics-to-best-practices-a0261cdf8886 在本次深入研究中,我们将从基础开始,逐步了解 API 设计,并逐步实现定义卓越 API 的最佳实践。 作为开发人员,您可能熟悉其中的许多…...

ROUGE指标在自然语言处理中的应用:从理论到实践
引言 你是否曾经遇到过机器生成的文本摘要与原文内容不符的情况?或者在使用机器翻译时,发现译文虽然“看起来”正确,但语义却与原文相差甚远?在自然语言处理(NLP)领域,如何科学地评估生成文本的…...
GraalVM:云原生时代的Java虚拟机
1. 概述 GraalVM是由Oracle公司开发的一款高性能、多语言的虚拟机平台。它不仅兼容传统的JVM字节码执行,还引入了即时编译(JIT)技术的革新,以及对多种编程语言的支持。GraalVM旨在通过提供更高效的执行环境来满足云计算环境中日益…...

Linux 信号集与信号掩码
目录 一、引言 二、信号集是什么 三、信号集关键函数 1.信号集的创建与初始化 2.信号的添加与删除 3.信号集的阻塞与解除阻塞 四、信号集实际应用场景 五、信号掩码的作用 六、信号掩码相关函数 1.sigprocmask 函数 2.sigemptyset 和 sigfillset 函数 七、信号掩码注…...

如何设置Edge浏览器访问软件
使用Edge浏览器访问分销ERP A\V系列软件时会出现各种报错,如何设置Edge浏览器使其正常访问,请看下面的具体操作。 一、打开Edge浏览器,点击右上角的 设置及其他,如图: 二、在弹出界面中,点击 扩展ÿ…...

DL笔记:旋转编码RoPE
1 背景 由于计算资源限制,目前的LLM大多在较短的上下文长度中进行训练,在推理中,如果超出预训练的长度,模型的性能将会显著降低 ——>需要一个可提供外推性的位置编码最经典的绝对位置编码就是原始Transformer中的那个sinusoi…...
C语言自定义类型与文件操作
构造类型 枚举类型 若定义不相关的常量使用宏定义;若定义一组相关的常量使用枚举。switch中case后访问的就是枚举。 定义: 我们一般情况下定义常量使用宏定义(#define),宏定义适合没有关联关系的常量;但有时需要对一组有关联关系…...
《计算机网络A》单选题-复习题库解析-3
目录 106、MAN通常是指( ) 107、下列因素中,不会影响信道数据传输速率的是( ) 108、以太网交换机进行转发决策时使用的PDU地址是( ) 109、下列机制中,可以解决因数据帧丢失而…...

VM虚拟机配置ubuntu网络
目录 桥接模式 NAT模式 桥接模式 特点:ubuntu的IP地址与主机IP的ip地址不同 第一部分:VM虚拟机给ubuntu的网络适配器,调为桥接模式 第二部分:保证所桥接的网络可以上网 第三部分:ubuntu使用DHCP(默认&…...
【每日学点鸿蒙知识】Web高度适配、变量声明规范、动画取消、签名文件、包体积优化相关
1、HarmonyOS Web页面高度适配? 在Web页面设置高度100%时,发现和Web控件的高度不一致,这个需要设置什么可以达到页面高度和Web容器高度一致 目前只支持两种web布局模式,分别为Web布局跟随系统WebLayoutMode.NONE和Web基于页面大…...

uniapp使用ucharts组件
1.ucharts准备 有两种使用方式:一种是在uni的插件市场下载(组件化开发)。一种是手动引入ucharts包。官方都封装好组件了,我们不用岂不是浪费。 直接去dcloud插件市场(DCloud 插件市场)找,第一…...

LabVIEW工程师的未来发展
对于LabVIEW工程师以及更广义的编程从业者(包括“高级民工”码农)来说,随着AI技术和软件编程的逐步成熟,确实面临一些新的挑战和机遇。以下是对此问题的深入分析和未来方向的建议: 现状分析:技术过剩与竞争…...
java的bio、nio、aio 以及操作系统的select、poll、epoll
在 Java 和其他编程语言中,I/O 模型的选择对网络应用的性能和可扩展性有着重要影响。以下是 BIO(Blocking I/O)、NIO(Non-blocking I/O)、AIO(Asynchronous I/O),以及操作系统级别的…...

2024 年发布的 Android AI 手机都有什么功能?
大家好,我是拭心。 2024 年是 AI 快速发展的一年,这一年 AI 再获诺贝尔奖,微软/苹果/谷歌等巨头纷纷拥抱 AI,多款强大的 AI 手机进入我们的生活。 今年全球 16% 的智能手机出货量为 AI 手机,到 2028 年,这…...
RLHF,LM模型
LLM(Large Language Model) RLHF(Reinforcement Learning from Human Feedback),即以强化学习方式依据人类反馈优化语言模型。 RLHF思想:使用强化学习的方式直接优化带有人类反馈的语言模型。RLHF使得在一般文本数据语料库上训练的语言模型能与复杂的人类价值观对齐。 R…...

【机器学习】工业 4.0 下机器学习如何驱动智能制造升级
我的个人主页 我的领域:人工智能篇,希望能帮助到大家!!!👍点赞 收藏❤ 随着科技的飞速发展,工业 4.0 浪潮正席卷全球制造业,而机器学习作为这一变革中的关键技术,正以前…...
REST与RPC的对比:从性能到扩展性的全面分析
在微服务架构中,服务间通信是核心问题之一。常见的两种通信方式是REST(Representational State Transfer)和RPC(Remote Procedure Call)。它们各有优缺点,适用于不同场景。本文将从性能、扩展性、兼容性和开…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

MySQL 8.0 OCP 英文题库解析(十三)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...

Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...

uniapp手机号一键登录保姆级教程(包含前端和后端)
目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号(第三种)后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...

C++ 设计模式 《小明的奶茶加料风波》
👨🎓 模式名称:装饰器模式(Decorator Pattern) 👦 小明最近上线了校园奶茶配送功能,业务火爆,大家都在加料: 有的同学要加波霸 🟤,有的要加椰果…...
vue3 daterange正则踩坑
<el-form-item label"空置时间" prop"vacantTime"> <el-date-picker v-model"form.vacantTime" type"daterange" start-placeholder"开始日期" end-placeholder"结束日期" clearable :editable"fal…...
comfyui 工作流中 图生视频 如何增加视频的长度到5秒
comfyUI 工作流怎么可以生成更长的视频。除了硬件显存要求之外还有别的方法吗? 在ComfyUI中实现图生视频并延长到5秒,需要结合多个扩展和技巧。以下是完整解决方案: 核心工作流配置(24fps下5秒120帧) #mermaid-svg-yP…...