数据挖掘——支持向量机分类器
数据挖掘——支持向量机分类器
- 支持向量机
- 最小间隔面推导
- 基于软间隔的C-SVM
- 非线性SVM与核变换
- 常用核函数
支持向量机
根据统计学习理论,学习机器的实际风险由经验风险值和置信范围值两部分组成。而基于经验风险最小化准则的学习方法只强调了训练样本的经验风险最小误差,没有最小化置信范围值,因此其泛化能力较差。
Vapnik于1995年提出的支持向量机(Support Vector Machine, SVM)以训练误差作为优化问题的约束条件,以置信范围值最小化作为优化目标,即SVM是一种基于结构风险最小化准则的学习方法,其泛化能力明显优于一些传统的学习方法。
由于SVM 的求解最后转化成二次规划问题的求解,因此SVM的解是全局唯一的最优解
SVM在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。
最小间隔面推导

注意分类的间隔为 2 ∣ ∣ w ∣ ∣ \frac{2}{||w||} ∣∣w∣∣2,不是 1 ∣ ∣ w ∣ ∣ \frac{1}{||w||} ∣∣w∣∣1

SVM目标函数求解:对偶问题求解

支持向量机解的稀疏性:训练完成后,大部分的训练样本都不需保留,最终模型仅与支持向量有关。
稀疏性理论解释:

基于软间隔的C-SVM

非线性SVM与核变换

观察以上两个式子可见:无论判别函数还是对偶形式中的目标函数都只涉及到高维空间中两个矢量之间的内积,而并不需要知道它们的具体坐标。

常用核函数

相关文章:
数据挖掘——支持向量机分类器
数据挖掘——支持向量机分类器 支持向量机最小间隔面推导基于软间隔的C-SVM非线性SVM与核变换常用核函数 支持向量机 根据统计学习理论,学习机器的实际风险由经验风险值和置信范围值两部分组成。而基于经验风险最小化准则的学习方法只强调了训练样本的经验风险最小…...
ImageNet 2.0?自动驾驶数据集迎来自动标注新时代
引言: 3DGS因其渲染速度快和高质量的新视角合成而备受关注。一些研究人员尝试将3DGS应用于驾驶场景的重建。然而,这些方法通常依赖于多种数据类型,如深度图、3D框和移动物体的轨迹。此外,合成图像缺乏标注也限制了其在下游任务中的…...
智能工厂的设计软件 应用场景的一个例子:为AI聊天工具添加一个知识系统 之11 方案再探之2 项目文件(修改稿1)
(以下内容是第二次重建项目(“方案再探”)时的项目附件。) 为AI聊天工具添加一个知识系统 Part1 人性化&去中心化 前情提要 这一次我们暂时抛开前面对“智能工厂的软件设计”的考虑--其软件智能 产品就是 应用程序。直接将这些思维方式和方法论 运…...
详解MySQL SQL删除(超详,7K,含实例与分析)
文章目录 前言1. 删除表中的所有记录基本语法使用场景注意事项运用实例分析说明2. 删除特定记录基本语法使用场景注意事项运用实例分析说明3. 删除单条记录基本语法使用场景注意事项运用实例分析说明4. 删除违反引用完整性的记录基本语法使用场景注意事项运用实例分析说明5. 删…...
uniapp:跳转第三方地图
1.跳转第三方高德地图 //跳转地图 toMap(item){uni.navigateTo({url: (window.location.href https://uri.amap.com/navigation?to${item.lng},${item.lat},${item.shopName}&modecar&policy1&srchttps://gawl.gazhcs.com/wap/index.html&callnative0)}) },…...
深入浅出梯度下降算法:快速抵达函数最小值的方法
引言 梯度是机器学习和优化领域中不可或缺的概念,它为我们提供了理解和调整多维空间中函数行为的工具。本文将详细介绍梯度的定义、性质,并通过具体的一元和多元函数案例展示如何使用梯度下降算法找到最佳参数。 一、梯度的基础知识 1.1 定义与计算 梯…...
RWKV 语言模型
RWKV Language Model是一种独特的循环神经网络(RNN)架构的语言模型,具有诸多优势和特点,在自然语言处理领域展现出了良好的性能和应用潜力,以下是具体介绍: 核心原理 融合RNN与Transformer优点:…...
pycharm如何拉取一个git项目,然后,修改后再上传到自建的项目中?
以chattts为例 https://github.com/2noise/ChatTTS.git 1.建一个虚拟环境,用于项目使用 2.pycharm新建工程 3.忽略 提示 勾选,新建远程仓库 设置账号和密码 设置git路径,一般是正确的,点测试即可 &…...
Java 性能调优实战
性能调优是每个程序员在开发过程中都无法避免的课题,尤其在面对大规模、高并发的系统时,性能优化更是必不可少。本文将根据《Java 性能调优实战》课程的七个模块,深入探讨其中的核心内容,结合实际代码示例,帮助大家更好…...
ctfshow 每日练习 web 区 php特性 1-10
前置知识 这个php特性可以很好的练习我们的白盒简单代码的审计能力 web89 preg_match 正则匹配函数 (绕过 : 换行符绕过 (也可以利用他的数组返回数字进行绕过一下禁止字符的情况)) include("flag.php&q…...
《C++设计模式》单例模式
文章目录 1、简介2、单例模式的种类2.1 饿汉式单例模式:2.2 懒汉式单例模式: 3、单例模式的具体介绍3.1、饿汉式3.1.1、代码示例3.1.2、组成部分3.1.3、优缺点3.1.4、应用场景 3.2、懒汉式3.2.1、代码示例3.2.2、组成部分3.2.3、优缺点3.2.4、应用场景 4…...
mapbox进阶,添加路径规划控件
👨⚕️ 主页: gis分享者 👨⚕️ 感谢各位大佬 点赞👍 收藏⭐ 留言📝 加关注✅! 👨⚕️ 收录于专栏:mapbox 从入门到精通 文章目录 一、🍀前言1.1 ☘️mapboxgl.Map 地图对象1.2 ☘️MapboxDirections 控件二、🍀添加路径规划控件1. ☘️实现思路2. ☘️…...
【论文阅读笔记】SCI算法与代码 | 低照度图像增强 | 2022.4.21
目录 一 SCI 1 SCI网络结构 核心代码(model.py) 2 SCI损失函数 核心代码(loss.py) 3 实验 二 SCI效果 1 下载代码 2 运行 一 SCI 💜论文题目:Toward Fast, Flexible, and Robust Low-Light Image …...
RAG实战:本地部署ragflow+ollama(linux)
1.部署ragflow 1.1安装配置docker 因为ragflow需要诸如elasticsearch、mysql、redis等一系列三方依赖,所以用docker是最简便的方法。 docker安装可参考Linux安装Docker完整教程,安装后修改docker配置如下: vim /etc/docker/daemon.json {…...
前路漫漫,曙光在望 !
起始 从20年大一开始写作至今,转眼五年时光已经过去了,最开始在CSDN这个平台写博客也只是因为一次机缘巧合情况下得知写博客可以获取奖赏,所以那个时期开始疯狂在CSDN发文记录自己编程学习过程,但是至今也未从写作中获利一分哈…...
特征工程-特征预处理
1.7 特征工程-特征预处理 学习目标 目标 了解什么是特征预处理知道归一化和标准化的原理及区别 1 什么是特征预处理 1.1 特征预处理定义 scikit-learn的解释 provides several common utility functions and transformer classes to change raw feature vectors into a represe…...
代码随想录算法训练营day22
代码随想录算法训练营 —day22 文章目录 代码随想录算法训练营前言回溯算法理论基础回溯法解决的问题回溯法模板 一、77. 组合二、216. 组合总和 III三、17. 电话号码的字母组合总结 前言 今天是算法营的第22天,希望自己能够坚持下来! 今日任务&#x…...
2024秋语法分析作业-B(满分25分)
特别注意:第17条产生式改为 17) Stmt → while ( Cond ) Stmt 【问题描述】 本次作业只测试一个含简单变量声明、赋值语句、输出语句、if语句和while语句的文法: 0) CompUnit → Block 1) Block → { BlockItemList } 2) BlockItemList → BlockItem…...
Python爬虫入门(1)
在互联网时代,数据成为了最宝贵的资源之一。Python作为一种功能强大的编程语言,因其简洁的语法和丰富的库支持,成为了编写网络爬虫的首选。本文将带你入门Python爬虫技术,让你能够从互联网上自动获取数据。 什么是爬虫࿱…...
鸿蒙1.2:第一个应用
1、create Project,选择Empty Activity 2、配置项目 project name 为项目名称,建议使用驼峰型命名 Bundle name 为项目包名 Save location 为保存位置 Module name 为模块名称,即运行时需要选择的模块名称,见下图 查看模块名称&…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
Admin.Net中的消息通信SignalR解释
定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...
高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
【Java_EE】Spring MVC
目录 Spring Web MVC 编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 编辑参数重命名 RequestParam 编辑编辑传递集合 RequestParam 传递JSON数据 编辑RequestBody …...
Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...
MySQL账号权限管理指南:安全创建账户与精细授权技巧
在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则…...
