【面试AI算法题中的知识点】方向涉及:ML/DL/CV/NLP/大数据...本篇介绍Tensor RT 的优化流程。
【面试AI算法题中的知识点】方向涉及:ML/DL/CV/NLP/大数据…本篇介绍Tensor RT 的优化流程。
【面试AI算法题中的知识点】方向涉及:ML/DL/CV/NLP/大数据…本篇介绍Tensor RT 的优化流程。
文章目录
- 【面试AI算法题中的知识点】方向涉及:ML/DL/CV/NLP/大数据...本篇介绍Tensor RT 的优化流程。
- 前言
- 1. 模型导入
- 2. 网络定义
- 3. 精度优化
- 4. 层融合和算子优化
- 5. 优化器和内存管理
- 6. 构建 TensorRT 引擎
- 7. 推理执行
- 8. 调优与性能分析
- 9. 动态优化
- 总结
- 2025年大数据、通信技术与计算机应用国际学术会议(BDCTA 2025)
欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!
大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文:
可访问艾思科蓝官网,浏览即将召开的学术会议列表。会议详细信息可参考:https://ais.cn/u/mmmiUz
前言
TensorRT 是 NVIDIA 提供的高性能深度学习推理优化工具,专为 NVIDIA GPU 设计。其目标是通过优化深度学习模型,使其在推理阶段能够更高效地利用硬件加速,提升推理速度并减少计算资源消耗。以下是 TensorRT 优化流程的详细讲解。
1. 模型导入
TensorRT 支持多种深度学习框架的模型,如 TensorFlow、PyTorch、Caffe 等。首先,我们需要将训练好的模型转换为 TensorRT 可处理的格式,通常是 ONNX(Open Neural Network Exchange)格式,或者直接从框架导出的特定格式。
- TensorFlow/PyTorch 转 ONNX:许多框架支持将训练后的模型导出为 ONNX 格式,TensorRT 支持直接导入 ONNX 模型。
- TensorFlow 直接支持:TensorRT 也可以直接将 TensorFlow 模型转换为 TensorRT 引擎。
- Caffe 模型:TensorRT 也能导入 Caffe 模型,但需要借助 Caffe 解析器(例如:
trtcaffe)。
2. 网络定义
一旦模型被导入 TensorRT,接下来会生成一个 TensorRT 网络定义(INetworkDefinition)。此阶段的任务是对网络的层次结构进行建模,并提供对层进行优化的基础。
- 层的转换:TensorRT 会分析并转换导入的层。如果是支持的层(如卷积、全连接等),它将进行直接的优化;如果是自定义的层(例如非标准激活函数),TensorRT
会尝试通过内置的转换规则进行优化。 - 层融合(Layer Fusion):TensorRT 会合并多个操作(如卷积 + 激活、批归一化 +
激活等),以减少计算和内存开销。合并操作有助于减少内存带宽压力并提高计算效率。
3. 精度优化
TensorRT 提供了多种精度优化方法,主要目的是通过降低计算精度来提高推理性能,同时尽可能保持推理的准确性。主要的精度优化包括:
- FP32(单精度浮点数):TensorRT 默认使用 32 位浮点数(FP32)精度进行推理,这是最常见的精度设置。
- FP16(半精度浮点数):FP16 使用更少的内存和计算资源,同时利用 NVIDIA Volta 架构及以后的 GPU 中的 Tensor Cores 提供更快的计算。TensorRT 会通过精度混合来执行 FP16 运算,这通常对大多数神经网络模型不会导致明显的性能损失。
- INT8(8 位整数):这是 TensorRT 的最高优化精度。INT8 精度通过量化神经网络的权重和激活值来进一步减少计算量和内存使用,从而显著提高推理速度。TensorRT 会使用量化技术(例如通过采样数据集进行校准)将模型的权重和激活量化为 INT8。
- 精度选择:TensorRT 可以根据硬件支持的不同精度(FP32, FP16, INT8)自动选择最合适的优化方式。为此,需要在配置时明确指定目标精度。例如,在推理时,选择 FP16 或 INT8 可以大幅提升性能。
4. 层融合和算子优化
TensorRT 会对网络进行一系列的层融合和算子优化,常见的优化包括:
- 卷积融合:将卷积操作与批归一化操作、激活操作合并为一个操作,以减少内存带宽并提升计算效率。
- 权重剪枝和共享:TensorRT 会检查并合并权重相同的层,减少内存开销,提升计算效率。
- Tensor Cores 优化:在支持 Volta 及后续架构的 GPU 上,TensorRT 会尽可能利用 Tensor Cores 来加速 FP16 和 INT8 运算,提升运算速度。
5. 优化器和内存管理
优化器是 TensorRT 的核心部分之一,它负责为网络选择最佳的执行方式。这包括:
- 算法选择:TensorRT 选择最适合当前硬件的算法。例如,对于卷积层,TensorRT 会根据硬件架构选择不同的卷积算法(如基于 FFT 的算法或 Winograd 算法等),这些算法可以大幅提升卷积的计算效率。
- 内存管理:TensorRT 会优化内存分配,确保内存的高效使用,避免不必要的内存拷贝和数据交换。这不仅减少了内存带宽的压力,还能提升整体的计算效率。
6. 构建 TensorRT 引擎
**优化后的模型经过处理后,生成一个 TensorRT 引擎。**引擎是一个经过充分优化的模型,它包含了执行推理所需的所有必要信息,如层的计算图、权重、优化策略、内存分配等。
**TensorRT 引擎是针对特定硬件(如特定的 GPU 型号和计算能力)优化的,因此在不同硬件上,生成的引擎可能有所不同。**为了最大限度提高性能,TensorRT 会将硬件信息作为输入,生成与目标平台兼容的最佳引擎。
7. 推理执行
TensorRT 引擎一旦构建完成,就可以用于推理。在推理过程中,TensorRT 会使用事先优化好的计算图和算子,执行加速后的推理任务。推理阶段包括:
- 内存管理:TensorRT 会在推理时进行动态内存分配,管理 GPU 上的数据传输和内存的生命周期。
- 批量推理:TensorRT 支持批量推理(Batch Inference),可以将多个输入数据合并为一个批次进行并行处理,提高吞吐量。
8. 调优与性能分析
在完成模型优化并部署到实际环境中后,仍然可以通过 TensorRT 提供的工具进行性能调优和分析。常用的调优工具有:
- TensorRT Profiler:用于分析推理过程中的瓶颈,找出影响性能的关键步骤。
- CUDA Visual Profiler:可以分析整个程序在 GPU 上的性能,帮助开发者进一步优化代码。
9. 动态优化
TensorRT 还支持一些动态优化特性,允许用户根据运行时数据调整网络结构和优化策略。例如,TensorRT 可以根据实际输入的维度和大小动态调整计算图,进一步提升推理性能。
总结
TensorRT 的优化流程涵盖了从模型导入、网络定义、精度优化到生成引擎的多个阶段,重点通过降低计算精度、进行算子融合、优化内存管理等方式,提高推理速度并减少资源消耗。通过合理选择精度和算法,TensorRT 可以显著加速推理任务,尤其是在 NVIDIA GPU 上,能够充分发挥硬件优势。
2025年大数据、通信技术与计算机应用国际学术会议(BDCTA 2025)
- 2025 International Conference on Big Data, Communication Technology
and Computer Applications - 会议时间:2025年2月14-16日
- 会议地点:马来西亚-吉隆坡(可线上)
- 会议官网:www.bdcta.org
- 审稿回复时间:投稿后7个工作日内
- 提交检索类型:EI Compendex,Scopus
相关文章:
【面试AI算法题中的知识点】方向涉及:ML/DL/CV/NLP/大数据...本篇介绍Tensor RT 的优化流程。
【面试AI算法题中的知识点】方向涉及:ML/DL/CV/NLP/大数据…本篇介绍Tensor RT 的优化流程。 【面试AI算法题中的知识点】方向涉及:ML/DL/CV/NLP/大数据…本篇介绍Tensor RT 的优化流程。 文章目录 【面试AI算法题中的知识点】方向涉及:ML/D…...
BLDC无感控制的驱动逻辑
如何知道转子已经到达预定位置,因为我们只有知道了转子到达了预定位置之后才能进行换相,这样电机才能顺滑的运转。转子位置检测常用的有三种方式。 方式一:通过过零检测,三相相电压与电机中性点电压进行比较。过零检测的优点在于…...
BP神经网络的反向传播算法
BP神经网络(Backpropagation Neural Network)是一种常用的多层前馈神经网络,通过反向传播算法进行训练。反向传播算法的核心思想是通过计算损失函数对每个权重的偏导数,从而调整权重,使得网络的预测输出与真实输出之间…...
[实用指南]如何将视频从iPhone传输到iPad
概括 将视频从 iPhone 传输到 iPad 时遇到问题?您可能知道一种方法,但不知道如何操作。此外,您要传输的视频越大,完成任务就越困难。那么如何将视频从 iPhone 传输到 iPad,特别是当您需要发送大视频文件时?…...
Linux Snipaste 截图闪屏/闪烁
防 csdn 不能看,Go to juejin Linux Snipaste 截图时窗口元素一闪一闪的无法正常使用。 解决此问题时系统环境为 Manjaro KDE6,不过我在其他发行版与 gnome 上也碰到了。 先放解决办法: # 启动 Snipaste 时去掉缩放参数 env -u QT_SCREEN_…...
【YOLOv5】源码(common.py)
该文件位于/models/common.py,提供了构建YOLOv5模型的各种基础模块,其中包含了常用的功能模块,如自动填充autopad函数、标准卷积层Conv、瓶颈层Bottleneck、C3、SPPF、Concat层等 参考笔记:【YOLOv3】 源码(common.py…...
Node 如何生成 RSA 公钥私钥对
一、引入crypto模块 crypto 为node 自带模块,无需安装 const crypto require(crypto);二、封装生成方法 async function generateRSAKeyPair() {return new Promise((resolve, reject) > {crypto.generateKeyPair(rsa, {modulusLength: 2048, // 密钥长度为 …...
瑞_Linux中部署配置Java服务并设置开机自启动
文章目录 背景Linux服务配置步骤并设置开机自启动附-Linux服务常用指令 🙊 前言:由于博主在工作时,需要将服务部署到 Linux 服务器上运行,每次通过指令启动服务非常麻烦,所以将 jar 包部署的服务设置开机自启动&#x…...
javaEE-多线程进阶-JUC的常见类
juc:指的是java.util.concurrent包,该包中加载了一些有关的多线程有关的类。 目录 一、Callable接口 FutureTask类 参考代码: 二、ReentrantLock 可重入锁 ReentrantLock和synchronized的区别: 1.ReentantLock还有一个方法:…...
Flume拦截器的实现
Flume conf文件编写 vim file_to_kafka.conf#定义组件 a1.sources r1 a1.channels c1#配置source a1.sources.r1.type TAILDIR a1.sources.r1.filegroups f1 a1.sources.r1.filegroups.f1 /Users/zhangjin/model/project/realtime-flink/applog/log/app.* # 设置断点续传…...
Swift Combine 学习(四):操作符 Operator
Swift Combine 学习(一):Combine 初印象Swift Combine 学习(二):发布者 PublisherSwift Combine 学习(三):Subscription和 SubscriberSwift Combine 学习(四&…...
leetcode 173.二叉搜索树迭代器栈绝妙思路
以上算法题中一个比较好的实现思路就是利用栈来进行实现,以下方法三就是利用栈来进行实现的,思路很好,很简练。进行next的时候,先是一直拿到左边的子树,直到null为止,这一步比较好思考一点,下一…...
df.groupby([pd.Grouper(freq=‘1M‘, key=‘Date‘), ‘Buyer‘]).sum()
df.groupby([pd.Grouper(freq1M, keyDate), Buyer]).sum() 用于根据特定的时间频率和买家(Buyer)对 DataFrame 进行分组,然后计算每个分组的总和。下面是对这行代码的逐步解释: df.groupby([...]):这个操作会根据传入的…...
LLM - 使用 LLaMA-Factory 部署大模型 HTTP 多模态服务 (4)
欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/144881432 大模型的 HTTP 服务,通过网络接口,提供 AI 模型功能的服务,允许通过发送 HTTP 请求,交互…...
icp备案网站个人备案与企业备案的区别
个人备案和企业备案是在进行ICP备案时需要考虑的两种不同情况。个人备案是指个人拥有的网站进行备案,而企业备案则是指企业或组织名下的网站进行备案。这两者在备案过程中有一些明显的区别。 首先,个人备案相对来说流程较为简单。个人备案只需要提供个人…...
如何不修改模型参数来强化大语言模型 (LLM) 能力?
前言 如果你对这篇文章感兴趣,可以点击「【访客必读 - 指引页】一文囊括主页内所有高质量博客」,查看完整博客分类与对应链接。 大语言模型 (Large Language Model, LLM, e.g. ChatGPT) 的参数量少则几十亿,多则上千亿,对其的训…...
AF3 AtomAttentionEncoder类的init_pair_repr方法解读
AlphaFold3 的 AtomAttentionEncoder 类中,init_pair_repr 方法方法负责为原子之间的关系计算成对表示(pair representation),这是原子转变器(atom transformer)模型的关键组成部分,直接影响对蛋白质/分子相互作用的建模。 init_pair_repr源代码: def init_pair_repr(…...
DDoS攻击防御方案大全
1. 引言 随着互联网的迅猛发展,DDoS(分布式拒绝服务)攻击成为了网络安全领域中最常见且危害严重的攻击方式之一。DDoS攻击通过向目标网络或服务发送大量流量,导致服务器过载,最终使其无法响应合法用户的请求。本文将深…...
Vue中常用指令
一、内容渲染指令 1.v-text:操作纯文本,用于更新标签包含的文本,但是使用不灵活,无法拼接字符串,会覆盖文本,可以简写为{{}},{{}}支持逻辑运算。 用法示例: //把name对应的值渲染到…...
Servlet解析
概念 Servlet是运行在服务端的小程序(Server Applet),可以处理客户端的请求并返回响应,主要用于构建动态的Web应用,是SpringMVC的基础。 生命周期 加载和初始化 默认在客户端第一次请求加载到容器中,通过反射实例化…...
7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...
电脑插入多块移动硬盘后经常出现卡顿和蓝屏
当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...
Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南
🚀 C extern 关键字深度解析:跨文件编程的终极指南 📅 更新时间:2025年6月5日 🏷️ 标签:C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言🔥一、extern 是什么?&…...
【Linux】Linux 系统默认的目录及作用说明
博主介绍:✌全网粉丝23W,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...
6个月Python学习计划 Day 16 - 面向对象编程(OOP)基础
第三周 Day 3 🎯 今日目标 理解类(class)和对象(object)的关系学会定义类的属性、方法和构造函数(init)掌握对象的创建与使用初识封装、继承和多态的基本概念(预告) &a…...
2025.6.9总结(利与弊)
凡事都有两面性。在大厂上班也不例外。今天找开发定位问题,从一个接口人不断溯源到另一个 接口人。有时候,不知道是谁的责任填。将工作内容分的很细,每个人负责其中的一小块。我清楚的意识到,自己就是个可以随时替换的螺丝钉&…...
