当前位置: 首页 > news >正文

AF3 AtomAttentionEncoder类的init_pair_repr方法解读

AlphaFold3 的 AtomAttentionEncoder 类中,init_pair_repr 方法方法负责为原子之间的关系计算成对表示(pair representation),这是原子转变器(atom transformer)模型的关键组成部分,直接影响对蛋白质/分子相互作用的建模。

init_pair_repr源代码:

    def init_pair_repr(self,features: Dict[str, Tensor],atom_cond: Tensor,z_trunk: Optional[Tensor],) -> Tensor:"""Compute the pair representation for the atom transformer.This is done in a separate function for checkpointing. The intermediate activations due to theatom pair representations are large and can be checkpointed to reduce memory usage.Args:features:Dictionary of input features.atom_cond:[bs, n_atoms, c_atom] The single atom conditioning from init_single_reprz_trunk:[bs, n_tokens, n_tokens, c_trunk] the pair representation from the trunkReturns:[bs, n_atoms // n_queries, n_queries, n_keys, c_atompair] The pair representation"""# Compute offsets between atom reference positionsa = partition_tensor(features['ref_pos'], self.n_queries, self.n_queries)  # (bs, n_atoms // 32, 32, 3)b = partition_tensor(features['ref_pos'], self.n_queries, self.n_keys)  # (bs, n_atoms // 32, 128, 3)offsets = a[:, :, :, None, :] - b[:, :, None, :, :]  # (bs, n_atoms // 32, 32, 128, 3)# Compute the valid maskref_space_uid = features['ref_space_uid'].unsqueeze(-1)  # (bs, n_atoms, 1)a = partition_tensor(ref_space_uid, self.n_queries, self.n_queries)  # (bs, n_atoms // 32, 32)b = partition_tensor(ref_space_uid, self.n_queries, self.n_keys)  # (bs, n_atoms // 32, 128)valid_mask = a[:, :, :, None] == b[:, :, None, :]  # (bs, n_atoms // 32, 32, 128, 1)valid_mask = valid_mask.to(offsets.dtype)  # convert boolean to binary# Embed the atom offsets and the valid masklocal_atom_pair = self.linear_atom_offsets(offsets) * valid_mask# Embed pairwise inverse squared distances, and the valid masksquared_distances = offsets.pow(2).sum(dim=-1, keepdim=True)  # (bs, n_atoms // 32, 32, 128, 1)inverse_dists = torch.reciprocal(torch.add(squared_distances, 1))local_atom_pair = local_atom_pair + self.linear_atom_distances(inverse_dists) * valid_masklocal_atom_pair = local_atom_pair + self.linear_mask(valid_mask) * valid_mask# If provided, add trunk embeddingsif self.trunk_conditioning:local_atom_pair = local_atom_pair + map_token_pairs_to_local_atom_pairs(self.proj_trunk_pair(z_trunk),features['atom_to_token'])# Add the combined single conditioning to the pair representationa = partition_tensor(self.linear_single_to_pair_row(F.relu(atom_cond)), self.n_queries, self.n_queries)b = partition_tensor(self.linear_single_to_pair_col(F.relu(atom_cond)), self.n_queries, self.n_keys)local_atom_pair = local_atom_pair + (a[:, :, :, None, :] + b[:, :, None, :, :])# Run a small MLP on the pair activationslocal_atom_pair = self.pair_mlp(local_atom_pair)return local_atom_pair

init_pair_repr代码解读:

1. 函数定义与注释
def init_pair_repr(self,features: Dict[str, Tensor],atom_cond: Tensor,z_trunk: Optional[Tensor],
) -> Tensor:"""Compute the pair representation for the atom transformer.Args:features: Dictionary of input features.atom_cond: [bs, n_atoms, c_atom] The single atom conditioning from init_single_reprz_trunk: [bs, n_tokens, n_tokens, c_trunk] the pair representation from the trunkReturns:[bs, n_atoms // n_queries, n_queries, n_keys, c_atompair] The pair representation"""
  • 功能描述

    • 方法用于计算原子之间的成对表示(pair representation),描述原子对之间的相互关系。
    • 通过输入特征和条件化单原子表示(atom_cond)生成成对表示。
    • 如果有 trunk 模块输出(z_trunk),进一步将其纳入建模。
  • 输入参数

    • features: 包含输入原子特征的字典,例如参考位置、掩码等。
    • atom_cond: 由 init_single_repr 生成的单原子条件表示,提供单原子特征。
    • z_trunk: 可选的 trunk 模块输出,用于加入全局上下文信息。
  • 输出

    • 返回形状为 [bs, n_atoms // n_queries, n_queries, n_keys, c_atompair] 的成对表示张量。
2.  计算原子间的位移偏移量
a = partition_tensor(features['ref_pos'], self.n_queries, self.n_queries)  # (bs, n_atoms // 32, 32, 3)
b = partition_tensor(features['ref_pos'], self.n_queries, self.n_keys)  # (bs, n_atoms // 32, 128, 3)
offsets = a[:, :, :, None, :] - b[:, :, None, :, :]  # (bs, n_atoms // 32, 32, 128, 3)
  • 功能
    • 通过分块操作,将原子的三维参考位置(ref_pos)分为 query 和 key 的两个集合,计算原子对的位移向量 offsets
  • 理论基础
    • 原子间的位移向量是物理意义上的距离关系的基础,直接影响距离计算和相互作用建模。
  • 细节
    • partition_tensor 将输入张量按块划分,便于后续处理。
    • offsets 形状为 [bs, n_atoms // n_queries, n_queries, n_keys, 3]

原理解读:

什么是 features['ref_pos']

  • features['ref_pos'] 是原子在 3D 空间中的参考坐标,形状为 (bs, n_atoms, 3)
    • bs 是批量大小(batch size)。
    • n_atoms 是蛋白质中的原子数量。
    • 每个原子的坐标由 3 个值(x, y, z)表示。

为什么使用 partition_tensor

  • partition_tensor 将输入张量按滑动窗口分区,使得可以对局部子集进行高效计算。
  • 作用:通过滑动窗口对原子的参考坐标进行局部划分:
    • 第一次划分 a:窗口大小为 n_queries,滑动步长为 n_queries,即每次取 32 个原子的局部坐标。
    • 第二次划分 b:窗口大小为 n_keys,滑动步长为 n_queries,即每次取 128 个原子的局部坐标。
  • 分区后的结果:
    • a:形状为 (bs, n_atoms // 32, 32, 3),表示每个滑动窗口内的原子局部坐标(32 个)。
    • b:形状为 (bs, n_atoms // 32, 128, 3),表示每个滑动窗口内的原子扩展区域(128 个)。

 为什么计算 offset

相关文章:

AF3 AtomAttentionEncoder类的init_pair_repr方法解读

AlphaFold3 的 AtomAttentionEncoder 类中,init_pair_repr 方法方法负责为原子之间的关系计算成对表示(pair representation),这是原子转变器(atom transformer)模型的关键组成部分,直接影响对蛋白质/分子相互作用的建模。 init_pair_repr源代码: def init_pair_repr(…...

DDoS攻击防御方案大全

1. 引言 随着互联网的迅猛发展,DDoS(分布式拒绝服务)攻击成为了网络安全领域中最常见且危害严重的攻击方式之一。DDoS攻击通过向目标网络或服务发送大量流量,导致服务器过载,最终使其无法响应合法用户的请求。本文将深…...

Vue中常用指令

一、内容渲染指令 1.v-text:操作纯文本,用于更新标签包含的文本,但是使用不灵活,无法拼接字符串,会覆盖文本,可以简写为{{}},{{}}支持逻辑运算。 用法示例: //把name对应的值渲染到…...

Servlet解析

概念 Servlet是运行在服务端的小程序(Server Applet),可以处理客户端的请求并返回响应,主要用于构建动态的Web应用,是SpringMVC的基础。 生命周期 加载和初始化 默认在客户端第一次请求加载到容器中,通过反射实例化…...

带虚继承的类对象模型

文章目录 1、代码2、 单个虚继承3、vbptr是什么4、虚继承的多继承 1、代码 #include<iostream> using namespace std;class Base { public:int ma; };class Derive1 :virtual public Base { public:int mb; };class Derive2 :public Base { public:int mc; };class Deri…...

深度学习中的离群值

文章目录 深度学习中有离群值吗&#xff1f;深度学习中的离群值来源&#xff1a;处理离群值的策略&#xff1a;1. 数据预处理阶段&#xff1a;2. 数据增强和鲁棒模型&#xff1a;3. 模型训练阶段&#xff1a;4. 异常检测集成模型&#xff1a; 如何处理对抗样本&#xff1f;总结…...

如何利用Logo设计免费生成器创建专业级Logo

在当今的商业世界中&#xff0c;一个好的Logo是品牌身份的象征&#xff0c;它承载着公司的形象与理念。设计一个专业级的Logo不再需要花费大量的金钱和时间&#xff0c;尤其是当我们拥有Logo设计免费生成器这样的工具时。接下来&#xff0c;让我们深入探讨如何利用这些工具来创…...

Mysql SQL 超实用的7个日期算术运算实例(10k)

文章目录 前言1. 加上或减去若干天、若干月或若干年基本语法使用场景注意事项运用实例分析说明2. 确定两个日期相差多少天基本语法使用场景注意事项运用实例分析说明3. 确定两个日期之间有多少个工作日基本语法使用场景注意事项运用实例分析说明4. 确定两个日期相隔多少个月或多…...

运算指令(PLC)

加 ADD 减 SUB 乘 MUL 除 DIV 浮点运算 整数运算...

「Mac畅玩鸿蒙与硬件49」UI互动应用篇26 - 数字填色游戏

本篇教程将带你实现一个数字填色小游戏&#xff0c;通过简单的交互逻辑&#xff0c;学习如何使用鸿蒙开发组件创建趣味性强的应用。 关键词 UI互动应用数字填色动态交互逻辑判断游戏开发 一、功能说明 数字填色小游戏包含以下功能&#xff1a; 数字选择&#xff1a;用户点击…...

机器学习经典算法——逻辑回归

目录 算法介绍 算法概念 算法的优缺点 LogisticRegression()函数理解 环境准备 算法练习 算法介绍 算法概念 逻辑回归&#xff08;Logistic Regression&#xff09;是一种广泛应用于分类问题的机器学习算法。 它基于线性回归的思想&#xff0c;但通过引入一个逻辑函数&…...

【数据仓库金典面试题】—— 包含详细解答

大家好&#xff0c;我是摇光~&#xff0c;用大白话讲解所有你难懂的知识点 该篇面试题主要针对面试涉及到数据仓库的数据岗位。 以下都是经典的关于数据仓库的问题&#xff0c;希望对大家面试有用~ 1、什么是数据仓库&#xff1f;它与传统数据库有何区别&#xff1f; 数据仓库…...

【UE5 C++课程系列笔记】19——通过GConfig读写.ini文件

步骤 1. 新建一个Actor类&#xff0c;这里命名为“INIActor” 2. 新建一个配置文件“Test.ini” 添加一个自定义配置项 3. 接下来我们在“INIActor”类中获取并修改“CustomInt”的值。这里定义一个方法“GetINIVariable” 方法实现如下&#xff0c;其中第16行代码用于构建配…...

JS 中 json数据 与 base64、ArrayBuffer之间转换

JS 中 json数据 与 base64、ArrayBuffer之间转换 json 字符串进行 base64 编码 function jsonToBase64(json) {return Buffer.from(json).toString(base64); }base64 字符串转为 json 字符串 function base64ToJson(base64) {try {const binaryString atob(base64);const js…...

USB 驱动开发 --- Gadget 驱动框架梳理

编译链接 #----》 linux_5.10/drivers/usb/gadget/Makefileobj-$(CONFIG_USB_LIBCOMPOSITE) libcomposite.o libcomposite-y : usbstring.o config.o epautoconf.o libcomposite-y composite.o functions.o configfs.o u_f.oobj-$(CONFIG_USB_GADG…...

细说STM32F407单片机中断方式CAN通信

目录 一、工程配置 1、时钟、DEBUG、USART6、GPIO、CodeGenerator 2、CAN1 3、NVIC 二、软件设计 1、KEYLED 2、can.h 3、can.c &#xff08;1&#xff09;CAN1中断初始化 &#xff08;2&#xff09;RNG初始化和随机数产生 &#xff08;3&#xff09; 筛选器组设置…...

Python应用指南:高德交通态势数据

在现代城市的脉络中&#xff0c;交通流量如同流动的血液&#xff0c;交通流量的动态变化对出行规划和城市管理提出了更高的要求。为了应对这一挑战&#xff0c;高德地图推出了交通态势查询API&#xff0c;旨在为开发者提供一个强大的工具&#xff0c;用于实时获取指定区域或道路…...

医学图像分析工具01:FreeSurfer || Recon -all 全流程MRI皮质表面重建

FreeSurfer是什么 FreeSurfer 是一个功能强大的神经影像学分析软件包&#xff0c;广泛用于处理和可视化大脑的横断面和纵向研究数据。该软件由马萨诸塞州总医院的Martinos生物医学成像中心的计算神经影像实验室开发&#xff0c;旨在为神经科学研究人员提供一个高效、精确的数据…...

.NET框架用C#实现PDF转HTML

HTML作为一种开放标准的网页标记语言&#xff0c;具有跨平台、易于浏览和搜索引擎友好的特性&#xff0c;使得内容能够在多种设备上轻松访问并优化了在线分享与互动。通过将PDF文件转换为HTML格式&#xff0c;我们可以更方便地在浏览器中展示PDF文档内容&#xff0c;同时也更容…...

mamba-ssm安装

注意1&#xff1a;mamba-ssm要与casual-conv1d一起安装。 注意2&#xff1a;mamba-ssm与cuda、pytorch版本要对应。需要看你下载的代码的requirements.txt causal-conv1d与mamba的whl包官网下载&#xff1a; https://github.com/Dao-AILab/causal-conv1d/releases?page3 htt…...

<6>-MySQL表的增删查改

目录 一&#xff0c;create&#xff08;创建表&#xff09; 二&#xff0c;retrieve&#xff08;查询表&#xff09; 1&#xff0c;select列 2&#xff0c;where条件 三&#xff0c;update&#xff08;更新表&#xff09; 四&#xff0c;delete&#xff08;删除表&#xf…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡&#xff0c;轻快的音乐在耳边持续回荡&#xff0c;小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下&#xff0c;六一来了。 今天是六一儿童节&#xff0c;小蓝老师为了让大家在节…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章&#xff1f;AI自动生成&#xff0c;效率提升10倍&#xff01; 支持多语言、自动配图、定时发布&#xff0c;让内容创作更轻松&#xff01; AI内容生成 → 不想每天写文章&#xff1f;AI一键生成高质量内容&#xff01;多语言支持 → 跨境电商必备&am…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

Mac下Android Studio扫描根目录卡死问题记录

环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中&#xff0c;提示一个依赖外部头文件的cpp源文件需要同步&#xff0c;点…...