AF3 AtomAttentionEncoder类的init_pair_repr方法解读
AlphaFold3 的 AtomAttentionEncoder
类中,init_pair_repr
方法方法负责为原子之间的关系计算成对表示(pair representation),这是原子转变器(atom transformer)模型的关键组成部分,直接影响对蛋白质/分子相互作用的建模。
init_pair_repr
源代码:
def init_pair_repr(self,features: Dict[str, Tensor],atom_cond: Tensor,z_trunk: Optional[Tensor],) -> Tensor:"""Compute the pair representation for the atom transformer.This is done in a separate function for checkpointing. The intermediate activations due to theatom pair representations are large and can be checkpointed to reduce memory usage.Args:features:Dictionary of input features.atom_cond:[bs, n_atoms, c_atom] The single atom conditioning from init_single_reprz_trunk:[bs, n_tokens, n_tokens, c_trunk] the pair representation from the trunkReturns:[bs, n_atoms // n_queries, n_queries, n_keys, c_atompair] The pair representation"""# Compute offsets between atom reference positionsa = partition_tensor(features['ref_pos'], self.n_queries, self.n_queries) # (bs, n_atoms // 32, 32, 3)b = partition_tensor(features['ref_pos'], self.n_queries, self.n_keys) # (bs, n_atoms // 32, 128, 3)offsets = a[:, :, :, None, :] - b[:, :, None, :, :] # (bs, n_atoms // 32, 32, 128, 3)# Compute the valid maskref_space_uid = features['ref_space_uid'].unsqueeze(-1) # (bs, n_atoms, 1)a = partition_tensor(ref_space_uid, self.n_queries, self.n_queries) # (bs, n_atoms // 32, 32)b = partition_tensor(ref_space_uid, self.n_queries, self.n_keys) # (bs, n_atoms // 32, 128)valid_mask = a[:, :, :, None] == b[:, :, None, :] # (bs, n_atoms // 32, 32, 128, 1)valid_mask = valid_mask.to(offsets.dtype) # convert boolean to binary# Embed the atom offsets and the valid masklocal_atom_pair = self.linear_atom_offsets(offsets) * valid_mask# Embed pairwise inverse squared distances, and the valid masksquared_distances = offsets.pow(2).sum(dim=-1, keepdim=True) # (bs, n_atoms // 32, 32, 128, 1)inverse_dists = torch.reciprocal(torch.add(squared_distances, 1))local_atom_pair = local_atom_pair + self.linear_atom_distances(inverse_dists) * valid_masklocal_atom_pair = local_atom_pair + self.linear_mask(valid_mask) * valid_mask# If provided, add trunk embeddingsif self.trunk_conditioning:local_atom_pair = local_atom_pair + map_token_pairs_to_local_atom_pairs(self.proj_trunk_pair(z_trunk),features['atom_to_token'])# Add the combined single conditioning to the pair representationa = partition_tensor(self.linear_single_to_pair_row(F.relu(atom_cond)), self.n_queries, self.n_queries)b = partition_tensor(self.linear_single_to_pair_col(F.relu(atom_cond)), self.n_queries, self.n_keys)local_atom_pair = local_atom_pair + (a[:, :, :, None, :] + b[:, :, None, :, :])# Run a small MLP on the pair activationslocal_atom_pair = self.pair_mlp(local_atom_pair)return local_atom_pair
init_pair_repr
代码解读:
1. 函数定义与注释
def init_pair_repr(self,features: Dict[str, Tensor],atom_cond: Tensor,z_trunk: Optional[Tensor],
) -> Tensor:"""Compute the pair representation for the atom transformer.Args:features: Dictionary of input features.atom_cond: [bs, n_atoms, c_atom] The single atom conditioning from init_single_reprz_trunk: [bs, n_tokens, n_tokens, c_trunk] the pair representation from the trunkReturns:[bs, n_atoms // n_queries, n_queries, n_keys, c_atompair] The pair representation"""
-
功能描述:
- 方法用于计算原子之间的成对表示(pair representation),描述原子对之间的相互关系。
- 通过输入特征和条件化单原子表示(
atom_cond
)生成成对表示。 - 如果有 trunk 模块输出(
z_trunk
),进一步将其纳入建模。
-
输入参数:
features
: 包含输入原子特征的字典,例如参考位置、掩码等。atom_cond
: 由init_single_repr
生成的单原子条件表示,提供单原子特征。z_trunk
: 可选的 trunk 模块输出,用于加入全局上下文信息。
-
输出:
- 返回形状为
[bs, n_atoms // n_queries, n_queries, n_keys, c_atompair]
的成对表示张量。
- 返回形状为
2. 计算原子间的位移偏移量
a = partition_tensor(features['ref_pos'], self.n_queries, self.n_queries) # (bs, n_atoms // 32, 32, 3)
b = partition_tensor(features['ref_pos'], self.n_queries, self.n_keys) # (bs, n_atoms // 32, 128, 3)
offsets = a[:, :, :, None, :] - b[:, :, None, :, :] # (bs, n_atoms // 32, 32, 128, 3)
- 功能:
- 通过分块操作,将原子的三维参考位置(
ref_pos
)分为 query 和 key 的两个集合,计算原子对的位移向量offsets
。
- 通过分块操作,将原子的三维参考位置(
- 理论基础:
- 原子间的位移向量是物理意义上的距离关系的基础,直接影响距离计算和相互作用建模。
- 细节:
partition_tensor
将输入张量按块划分,便于后续处理。offsets
形状为[bs, n_atoms // n_queries, n_queries, n_keys, 3]
。
原理解读:
什么是 features['ref_pos']
?
features['ref_pos']
是原子在 3D 空间中的参考坐标,形状为(bs, n_atoms, 3)
。bs
是批量大小(batch size)。n_atoms
是蛋白质中的原子数量。- 每个原子的坐标由 3 个值(x, y, z)表示。
为什么使用 partition_tensor
?
partition_tensor
将输入张量按滑动窗口分区,使得可以对局部子集进行高效计算。- 作用:通过滑动窗口对原子的参考坐标进行局部划分:
- 第一次划分
a
:窗口大小为n_queries
,滑动步长为n_queries
,即每次取 32 个原子的局部坐标。 - 第二次划分
b
:窗口大小为n_keys
,滑动步长为n_queries
,即每次取 128 个原子的局部坐标。
- 第一次划分
- 分区后的结果:
a
:形状为(bs, n_atoms // 32, 32, 3)
,表示每个滑动窗口内的原子局部坐标(32 个)。b
:形状为(bs, n_atoms // 32, 128, 3)
,表示每个滑动窗口内的原子扩展区域(128 个)。
为什么计算 offset
相关文章:

AF3 AtomAttentionEncoder类的init_pair_repr方法解读
AlphaFold3 的 AtomAttentionEncoder 类中,init_pair_repr 方法方法负责为原子之间的关系计算成对表示(pair representation),这是原子转变器(atom transformer)模型的关键组成部分,直接影响对蛋白质/分子相互作用的建模。 init_pair_repr源代码: def init_pair_repr(…...

DDoS攻击防御方案大全
1. 引言 随着互联网的迅猛发展,DDoS(分布式拒绝服务)攻击成为了网络安全领域中最常见且危害严重的攻击方式之一。DDoS攻击通过向目标网络或服务发送大量流量,导致服务器过载,最终使其无法响应合法用户的请求。本文将深…...

Vue中常用指令
一、内容渲染指令 1.v-text:操作纯文本,用于更新标签包含的文本,但是使用不灵活,无法拼接字符串,会覆盖文本,可以简写为{{}},{{}}支持逻辑运算。 用法示例: //把name对应的值渲染到…...

Servlet解析
概念 Servlet是运行在服务端的小程序(Server Applet),可以处理客户端的请求并返回响应,主要用于构建动态的Web应用,是SpringMVC的基础。 生命周期 加载和初始化 默认在客户端第一次请求加载到容器中,通过反射实例化…...

带虚继承的类对象模型
文章目录 1、代码2、 单个虚继承3、vbptr是什么4、虚继承的多继承 1、代码 #include<iostream> using namespace std;class Base { public:int ma; };class Derive1 :virtual public Base { public:int mb; };class Derive2 :public Base { public:int mc; };class Deri…...

深度学习中的离群值
文章目录 深度学习中有离群值吗?深度学习中的离群值来源:处理离群值的策略:1. 数据预处理阶段:2. 数据增强和鲁棒模型:3. 模型训练阶段:4. 异常检测集成模型: 如何处理对抗样本?总结…...

如何利用Logo设计免费生成器创建专业级Logo
在当今的商业世界中,一个好的Logo是品牌身份的象征,它承载着公司的形象与理念。设计一个专业级的Logo不再需要花费大量的金钱和时间,尤其是当我们拥有Logo设计免费生成器这样的工具时。接下来,让我们深入探讨如何利用这些工具来创…...

Mysql SQL 超实用的7个日期算术运算实例(10k)
文章目录 前言1. 加上或减去若干天、若干月或若干年基本语法使用场景注意事项运用实例分析说明2. 确定两个日期相差多少天基本语法使用场景注意事项运用实例分析说明3. 确定两个日期之间有多少个工作日基本语法使用场景注意事项运用实例分析说明4. 确定两个日期相隔多少个月或多…...

运算指令(PLC)
加 ADD 减 SUB 乘 MUL 除 DIV 浮点运算 整数运算...

「Mac畅玩鸿蒙与硬件49」UI互动应用篇26 - 数字填色游戏
本篇教程将带你实现一个数字填色小游戏,通过简单的交互逻辑,学习如何使用鸿蒙开发组件创建趣味性强的应用。 关键词 UI互动应用数字填色动态交互逻辑判断游戏开发 一、功能说明 数字填色小游戏包含以下功能: 数字选择:用户点击…...

机器学习经典算法——逻辑回归
目录 算法介绍 算法概念 算法的优缺点 LogisticRegression()函数理解 环境准备 算法练习 算法介绍 算法概念 逻辑回归(Logistic Regression)是一种广泛应用于分类问题的机器学习算法。 它基于线性回归的思想,但通过引入一个逻辑函数&…...

【数据仓库金典面试题】—— 包含详细解答
大家好,我是摇光~,用大白话讲解所有你难懂的知识点 该篇面试题主要针对面试涉及到数据仓库的数据岗位。 以下都是经典的关于数据仓库的问题,希望对大家面试有用~ 1、什么是数据仓库?它与传统数据库有何区别? 数据仓库…...

【UE5 C++课程系列笔记】19——通过GConfig读写.ini文件
步骤 1. 新建一个Actor类,这里命名为“INIActor” 2. 新建一个配置文件“Test.ini” 添加一个自定义配置项 3. 接下来我们在“INIActor”类中获取并修改“CustomInt”的值。这里定义一个方法“GetINIVariable” 方法实现如下,其中第16行代码用于构建配…...

JS 中 json数据 与 base64、ArrayBuffer之间转换
JS 中 json数据 与 base64、ArrayBuffer之间转换 json 字符串进行 base64 编码 function jsonToBase64(json) {return Buffer.from(json).toString(base64); }base64 字符串转为 json 字符串 function base64ToJson(base64) {try {const binaryString atob(base64);const js…...

USB 驱动开发 --- Gadget 驱动框架梳理
编译链接 #----》 linux_5.10/drivers/usb/gadget/Makefileobj-$(CONFIG_USB_LIBCOMPOSITE) libcomposite.o libcomposite-y : usbstring.o config.o epautoconf.o libcomposite-y composite.o functions.o configfs.o u_f.oobj-$(CONFIG_USB_GADG…...

细说STM32F407单片机中断方式CAN通信
目录 一、工程配置 1、时钟、DEBUG、USART6、GPIO、CodeGenerator 2、CAN1 3、NVIC 二、软件设计 1、KEYLED 2、can.h 3、can.c (1)CAN1中断初始化 (2)RNG初始化和随机数产生 (3) 筛选器组设置…...

Python应用指南:高德交通态势数据
在现代城市的脉络中,交通流量如同流动的血液,交通流量的动态变化对出行规划和城市管理提出了更高的要求。为了应对这一挑战,高德地图推出了交通态势查询API,旨在为开发者提供一个强大的工具,用于实时获取指定区域或道路…...

医学图像分析工具01:FreeSurfer || Recon -all 全流程MRI皮质表面重建
FreeSurfer是什么 FreeSurfer 是一个功能强大的神经影像学分析软件包,广泛用于处理和可视化大脑的横断面和纵向研究数据。该软件由马萨诸塞州总医院的Martinos生物医学成像中心的计算神经影像实验室开发,旨在为神经科学研究人员提供一个高效、精确的数据…...

.NET框架用C#实现PDF转HTML
HTML作为一种开放标准的网页标记语言,具有跨平台、易于浏览和搜索引擎友好的特性,使得内容能够在多种设备上轻松访问并优化了在线分享与互动。通过将PDF文件转换为HTML格式,我们可以更方便地在浏览器中展示PDF文档内容,同时也更容…...

mamba-ssm安装
注意1:mamba-ssm要与casual-conv1d一起安装。 注意2:mamba-ssm与cuda、pytorch版本要对应。需要看你下载的代码的requirements.txt causal-conv1d与mamba的whl包官网下载: https://github.com/Dao-AILab/causal-conv1d/releases?page3 htt…...

网络IP协议
IP(Internet Protocol,网际协议)是TCP/IP协议族中重要的协议,主要负责将数据包发送给目标主机。IP相当于OSI(图1)的第三层网络层。网络层的主要作用是失陷终端节点之间的通信。这种终端节点之间的通信也叫点…...

双指针算法详解
目录 一、双指针 二、双指针题目 1.移动零 解法: 代码: 2.复写零 编辑 解法: 代码: 边界情况处理: 3.快乐数 编辑 解法:快慢指针 代码: 4.盛水最多的容器 解法:(对撞指针)…...

MySQL的最左匹配原则是什么
最左匹配原则是应用于联合索引的规则。 对于以下表F:f1,f2,f3;建立了联合索引(f2,f3),那么我们在查询的时候如果是: select * from F where f2 ? and f3 ?; 或 sele…...

LeetCode:106.从中序与后序遍历序列构造二叉树
跟着carl学算法,本系列博客仅做个人记录,建议大家都去看carl本人的博客,写的真的很好的! 代码随想录 LeetCode:106.从中序与后序遍历序列构造二叉树 给定两个整数数组 inorder 和 postorder ,其中 inorder …...

22. 【.NET 8 实战--孢子记账--从单体到微服务】--记账模块--切换主币种
这篇文章我们将结合主币种设置以及收支记录实现切换主币种后重新计算以前记录的转换后的金额。那么,为什么要在切换主币种后要重新计算转换后的金额呢?有以下两个原因: 统一的币种,方便我们统计数据方便用户按照当地的币种查看收…...

01.02周四F34-Day43打卡
文章目录 1. 地是湿的。昨晚估计下雨了。2. 你可能把包丢在餐厅里了吧?3. 她说他可能误了航班。4. 我本来应该早点来的,但路上特别堵。5. 约翰可能在那次事故中受了重伤。6. 这是一个情景对话7. 我本可以走另一条路的。8. 我准是瘦了不少,你看我这裤子现在多肥。9. 钱没了!会…...

行业商机信息付费小程序系统开发方案
行业商机信息付费小程序系统,主要是整合优质行业资源,实时更新的商机信息。在当今信息爆炸的时代,精准、高效地获取行业商机信息对于企业和个人创业者而言至关重要。 一、使用场景 日常浏览:用户在工作间隙或闲暇时间,…...

cut-命令详解
一、命令 1.cut列截取命令 cut命令的默认分隔符是制表符 2.参数: -f 列号 #提取第几列-d 分隔符 #按照指定分隔符分割列-c 字符范围 #不依赖分隔符来区分列,而是通过字符范围(行首为0)来进行字段提取。“n-”表…...

Apache MINA 反序列化漏洞CVE-2024-52046
漏洞描述: Apache MINA 是一个功能强大、灵活且高性能的网络应用框架。它通过抽象网络层的复杂性,提供了事件驱动架构和灵活的 Filter 链机制,使得开发者可以更容易地开发各种类型的网络应用。 Apache MINA 框架的 ObjectSerializationDeco…...

二、AI知识(神经网络)
二、AI知识(神经网络) 1.常用算法 FNN CNN RNN LSTM DNN GRU 2.深度学习中概念及算法 1. 感知机 感知机(Perceptron)是一种最早的人工神经网络模型之一,通常用来解决二分类问题。它由弗兰克罗森布拉特&#…...