【微软,模型规模】模型参数规模泄露:理解大型语言模型的参数量级

模型参数规模泄露:理解大型语言模型的参数量级
关键词:
#大型语言模型 Large Language Model
#参数规模 Parameter Scale
#GPT-4o
#GPT-4o-mini
#Claude 3.5 Sonnet
具体实例与推演
近日,微软在一篇医学相关论文中意外泄露了OpenAI及Claude系列模型的参数信息。这些模型的参数规模如下:
- GPT-4o 约 200B(2000亿)
- GPT-4o-mini 约 8B(80亿)
- Claude 3.5 Sonnet 约 175B(1750亿)
这些参数规模代表了模型中的参数数量,是衡量模型复杂度和能力的重要指标。
第一节:模型参数规模的类比与核心概念
模型参数规模就像是模型的“大脑容量”,参数越多,模型的“记忆力”和“理解力”通常就越强,能够处理和生成的信息也就越复杂。
这就像是一个人的大脑,脑细胞越多,学习和思考的能力通常就越强。
第二节:模型参数规模的核心概念与应用
2.1 核心概念
| 核心概念 | 定义 | 比喻或解释 |
|---|---|---|
| 模型参数规模 | 模型中参数的数量,通常以亿(B)为单位。 | 像是模型的“大脑容量”,决定模型的复杂度和能力。 |
| 大型语言模型 | 参数规模庞大的语言模型,能够处理和生成复杂的文本信息。 | 像是拥有强大“大脑”的文本处理专家。 |
2.2 优势与劣势
| 方面 | 描述 |
|---|---|
| 优势 | 能够处理和生成复杂的文本信息,提高自然语言处理的准确性和流畅性。 |
| 劣势 | 参数规模庞大,需要大量的计算资源和存储空间,训练和使用成本较高。 |
2.3 与人类大脑的类比
大型语言模型的参数规模与人类大脑的神经元数量有一定的类比性。人类大脑中的神经元数量庞大,使得我们能够处理和理解复杂的信息。同样,大型语言模型的参数规模庞大,使得它们能够处理和生成复杂的文本信息。
第三节:公式探索与推演运算
在大型语言模型的上下文中,参数规模通常是一个固定的数值,不需要通过公式来计算。然而,我们可以探讨一些与参数规模相关的概念,如模型的存储需求和计算复杂度。
3.1 存储需求
模型的存储需求与参数规模直接相关。假设每个参数占用一定的存储空间(如浮点数占用4字节或8字节),那么模型的存储需求可以表示为:
存储需求 = 参数规模 × 每个参数的存储空间 \text{存储需求} = \text{参数规模} \times \text{每个参数的存储空间} 存储需求=参数规模×每个参数的存储空间
3.2 计算复杂度
模型的计算复杂度也与参数规模有关。在处理输入或生成输出时,模型需要进行大量的计算操作,这些操作的数量通常与参数规模成正比。因此,可以认为模型的计算复杂度是参数规模的函数:
计算复杂度 = f ( 参数规模 ) \text{计算复杂度} = f(\text{参数规模}) 计算复杂度=f(参数规模)
其中, f f f 是一个增函数,表示随着参数规模的增加,计算复杂度也会增加。
3.3 具体实例
以GPT-4o为例,其参数规模约为200B(2000亿)。假设每个参数占用8字节的存储空间,那么GPT-4o的存储需求为:
存储需求 = 200 B × 8 字节/参数 = 1600 GB \text{存储需求} = 200 \text{B} \times 8 \text{字节/参数} = 1600 \text{GB} 存储需求=200B×8字节/参数=1600GB
这只是一个粗略的估计,实际存储需求可能因模型的具体实现和优化而有所不同。
第四节:相似概念比对
| 概念 | 共同点 | 不同点 |
|---|---|---|
| 模型参数规模 | 衡量模型复杂度和能力的重要指标。 | 不同模型的参数规模可能相差很大,导致性能和成本上的差异。 |
| 模型准确率 | 都是评估模型性能的重要指标。 | 准确率更多地反映模型在特定任务上的表现,而参数规模反映模型的整体复杂度。 |
| 模型训练时间 | 都与模型的复杂度和能力有关。 | 训练时间受多种因素影响,包括参数规模、计算资源、优化算法等。 |
相关文章:
【微软,模型规模】模型参数规模泄露:理解大型语言模型的参数量级
模型参数规模泄露:理解大型语言模型的参数量级 关键词: #大型语言模型 Large Language Model #参数规模 Parameter Scale #GPT-4o #GPT-4o-mini #Claude 3.5 Sonnet 具体实例与推演 近日,微软在一篇医学相关论文中意外泄露了OpenAI及Claud…...
深入理解并发原子性、可见性、有序性与JMM内存模型
1. 并发三大特性 并发编程Bug的源头:原子性、可见性和有序性问题 1.1 原子性 一个或多个操作,要么全部执行且在执行过程中不被任何因素打断,要么全部不执行。在 Java 中,对基本数据类型的变量的读取和赋值操作是原子性操作&…...
电商项目-数据同步解决方案(四)商品下架同步更新ES索引库数据
商品下架索引库删除数据 一、 需求分析和业务逻辑 商品下架后将商品从索引库中移除。 主要应用技术有: 消息队列-RabbitMQ ,分布式搜索引擎-ElasticSearch,Eureka,Canal,Feign远程调用 (1)在…...
vue学习第一阶段
vue 什么是Vue? 概念:Vue是一个构建用户页面的渐进式框架 Vue的两种使用方式 Vue的核心开发 场景: 局部 {\color{red}局部} 局部模块改造Vue核心包& Vue插件 工程化开发场景: 整站 {\color{red}整站} 整站开发Vue2官网 https://v2.cn.vuejs.org/ 资料存放地址 D:\Baidu…...
React虚拟DOM:理解和应用
写在前面 在现代前端开发中,React 是一个非常流行的 JavaScript 库,用于构建用户界面。它引入了一个名为“虚拟 DOM”(Virtual DOM)的概念,这个概念对于 React 的高效性能和易用性至关重要。本文将深入探讨 React Vir…...
用python编写一个放烟花的小程序
import pygame import random # 代码解释及使用说明: # 首先,导入 pygame 和 random 库。pygame 用于创建游戏窗口和图形绘制,random 用于生成随机数。 # 初始化 pygame,并设置屏幕尺寸为 800x600 像素,设置窗口标题为…...
Git 仓库与文件管理笔记
Git 的三种仓库概念 本地仓库 (Local Repository) 位于本地 .git 文件夹中通过 git init 或 git clone 创建存储完整的项目历史和分支信息 远程仓库 (Remote Repository) 位于 GitHub、GitLab 等平台服务器使用 git remote -v 查看所有远程仓库默认远程仓库名通常为 origin 工…...
2024 年 docker 提示index.docker.io
发现 docker 提示以下错误: Error response from daemon: Get "https://index.docker.io/v1/search?qnginx&n25": dialing index.docker.io:443 container via direct connection because has no HTTPS proxy: connecting to index.docker.io:443:…...
TCP粘/拆包----自定义消息协议
今天是2024年12月31日,今年的最后一天,希望所有的努力在新的一年会有回报。❀ 无路可退,放弃很难,坚持很酷 TCP传输 是一种面向二进制的,流的传输。在传输过程中最大的问题是消息之间的边界不明确。而在服务端主要的…...
Modbus知识详解
Modbus知识详解 ## 1.什么是Modbus?**顾名思义**,它是一个Bus(总线),即总线协议。比如串口协议、IIC协议、SPI都是通信协议。你接触到这种协议,相信你所处的行业是工业电子方面或者你的产品用于工业。好了,…...
Java-创建一个结合CompletableFuture和自定义功能的工具类
1.重试机制:当异步任务失败时自动重试。 2.超时重试:在指定时间内未完成的任务进行重试。 3.批量处理:将多个任务批量执行并收集结果。 4.日志记录:为每个异步任务添加日志记录,便于调试和监控。 5.自定义线程池:允许用户传入自定义的线程池配置。 import java.util…...
【MATLAB第111期】基于MATLAB的sobol全局敏感性分析方法二阶指数计算
【MATLAB第111期】基于MATLAB的sobol全局敏感性分析方法二阶指数计算 一、简介 在MATLAB中计算Sobol二阶效应指数通常涉及到全局敏感性分析(Global Sensitivity Analysis, GSA),其中Sobol方法是一种流行的技术,用于评估模型输入…...
C语言-sprintf
sprintf是一个在C语言中用于字符串格式化的函数,其功能是将格式化的数据写入某个字符串中。该函数定义stdio.h在头文件中,原型为: int sprintf(char *string, const char *format, ...); 函数参数 string:指向一个字符数组的指针&#…...
APM 3.0.2 | 聚合B站、油管和MF的音乐播放器,支持歌词匹配
APM(Azusa-Player-Mobile)是一款基于B站的第三方音频播放器,现已扩展支持YouTube Music、YouTube、本地音乐、AList和MusicFree等平台。它不仅提供视频作为音频播放,还具备排行榜、分区动态等功能。用户可以通过添加Alist地址接入…...
Mono 和 IL2Cpp的区别
Mono特征: 标准项目中有Assembly-CSharp.dll , 但在更复杂的项目或特定配置中,可能会有其他.dll或结构变更 在游戏的数据目录下看到一系列的.dll文件,这些文件的语言一般为中间语言 CE附加 , 查看是否有Mono.dll相关模块 目录有MonoBleedingEdge文件夹 IL2Cpp 标准项目应该…...
力扣第389题—找不同
class Solution:def findTheDifference(self, s: str, t: str) -> str:# 对字符串 s 和 t 进行排序a sorted(s)b sorted(t)# 比较排序后的两个列表for i in range(len(a)):if a[i] ! b[i]:return b[i]# 如果前面的比较没有找到差异,那么差异字符在 t 的最后一个…...
我的桌面 1.9.75 | 个性化定制手机桌面,丰富的小组件和主题
我的桌面iScreen是一款万能桌面小组件APP,提供各种高颜值桌面主题与创意小组件自由组合。支持X面板、照片、待办清单、时钟、日历等实用有趣的小组件。拥有超过500种小组件供选择,包括灵动面板、滚动相册等,搭配300多种精美主题和高清壁纸&am…...
【Java项目】基于SpringBoot的【垃圾分类系统】
【Java项目】基于SpringBoot的【垃圾分类系统】 技术简介:本系统使用采用B/S架构、Spring Boot框架、MYSQL数据库进行开发设计。 系统简介:使用者分为管理员和用户、垃圾分类管理员,实现功能包括管理员:首页、个人中心、用户管理、…...
生成埃里克卡特曼人工智能语音听起来像他或配音视频
您是《南方公园》和迷人角色埃里克卡特曼的忠实粉丝吗?您是否渴望获得标志性的埃里克卡特曼 AI 语音,将他的动画魅力融入到您的数字内容、游戏或流媒体体验中?如果答案是肯定的,那么您来对地方了! 在本文中࿰…...
C语言中的va_list
目录 1. 可变参数函数(Variadic Function) 2. va_list 及相关宏 3. va_list 的用途 4. 与 printf、vsnprintf 等函数的关系 5. 在实际场景中的示例 5.1 API_SendAtCommandParam 函数 5.2 va_arg 直接取参数 6. 常见问题 7. 结论 在 C 语言中&am…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
Day131 | 灵神 | 回溯算法 | 子集型 子集
Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣(LeetCode) 思路: 笔者写过很多次这道题了,不想写题解了,大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...
AtCoder 第409场初级竞赛 A~E题解
A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...
C++中string流知识详解和示例
一、概览与类体系 C 提供三种基于内存字符串的流,定义在 <sstream> 中: std::istringstream:输入流,从已有字符串中读取并解析。std::ostringstream:输出流,向内部缓冲区写入内容,最终取…...
C++ 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...
均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...
Springboot社区养老保险系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,社区养老保险系统小程序被用户普遍使用,为方…...
Bean 作用域有哪些?如何答出技术深度?
导语: Spring 面试绕不开 Bean 的作用域问题,这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开,结合典型面试题及实战场景,帮你厘清重点,打破模板式回答,…...
