Diffusers 使用 LoRA
使用diffusers 加载 LoRA,实现文生图功能。摘自 diffusers文档。
模型可以根据名称去modelscope找对应资源下载。使用的时候需要替换成具体路径。虽然modelscope和diffusers都使用了模型id,但是并不能通用。
不同的LoRA对应了不同的“trigger” words,在prompt中加入这个“trigger” words才能生成正确的结果。
比如使用了toy-face的LoRA模型,那么就要在prompt加入“toy face”。
from diffusers import DiffusionPipeline
import torchpipe_id = "stabilityai/stable-diffusion-xl-base-1.0"
pipe = DiffusionPipeline.from_pretrained(pipe_id, torch_dtype=torch.float16).to("cuda")#模型下载
#from modelscope import snapshot_download
#model_dir = snapshot_download('SDXL-LoRA/CiroN2022-toy-face')
#加载lora
pipe.load_lora_weights("CiroN2022/toy-face", weight_name="toy_face_sdxl.safetensors", adapter_name="toy")
# 加入 “toy face”
prompt = "toy_face of a hacker with a hoodie"
lora_scale = 0.9
image = pipe(prompt, num_inference_steps=30, cross_attention_kwargs={"scale": lora_scale}, generator=torch.manual_seed(0)
).images[0]
image
也可以再加载另一个模型,pipe.set_adapters() 函数确定使用哪个模型。不同的模型根据adapter_name来区分。
pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
pipe.set_adapters("pixel")prompt = "a hacker with a hoodie, pixel art"
image = pipe(prompt, num_inference_steps=30, cross_attention_kwargs={"scale": lora_scale}, generator=torch.manual_seed(0)
).images[0]
image
也可以同时使用,adapter_weights设置不同的权重,prompt也应该包括全部的“trigger” words。
pipe.set_adapters(["pixel", "toy"], adapter_weights=[0.5, 1.0])
prompt = "toy_face of a hacker with a hoodie, pixel art"
image = pipe(prompt, num_inference_steps=30, cross_attention_kwargs={"scale": 1.0}, generator=torch.manual_seed(0)
).images[0]
image

更准确的控制LoRA的影响强度。unet一般包括down、mid、up,不同的部分对图片的细节、纹理、风格等影响不同。
pipe.enable_lora() # enable lora again, after we disabled it above
prompt = "toy_face of a hacker with a hoodie, pixel art"
adapter_weight_scales = { "unet": { "down": 1, "mid": 0, "up": 0} }
pipe.set_adapters("pixel", adapter_weight_scales)
image = pipe(prompt, num_inference_steps=30, generator=torch.manual_seed(0)).images[0]
image
从左到右分别对应{ “down”: 1, “mid”: 0, “up”: 0},{ “down”: 0, “mid”: 1, “up”: 0},{ “down”: 0, “mid”: 0, “up”: 1}

更细粒度的控制。要根据具体的模型结构,不同的模型结构不同。
adapter_weight_scales_toy = 0.5
adapter_weight_scales_pixel = {"unet": {"down": 0.9, # all transformers in the down-part will use scale 0.9# "mid" # because, in this example, "mid" is not given, all transformers in the mid part will use the default scale 1.0"up": {"block_0": 0.6, # all 3 transformers in the 0th block in the up-part will use scale 0.6"block_1": [0.4, 0.8, 1.0], # the 3 transformers in the 1st block in the up-part will use scales 0.4, 0.8 and 1.0 respectively}}
}
pipe.set_adapters(["toy", "pixel"], [adapter_weight_scales_toy, adapter_weight_scales_pixel])
image = pipe(prompt, num_inference_steps=30, generator=torch.manual_seed(0)).images[0]
image

常用函数
#不使用
pipe.disable_lora()
#使用
pipe.enable_lora()
#正在使用的
pipe.get_active_adapters()
#列表
pipe.get_list_adapters()
#删除
pipe.delete_adapters("toy")
相关文章:
Diffusers 使用 LoRA
使用diffusers 加载 LoRA,实现文生图功能。摘自 diffusers文档。 模型可以根据名称去modelscope找对应资源下载。使用的时候需要替换成具体路径。虽然modelscope和diffusers都使用了模型id,但是并不能通用。 不同的LoRA对应了不同的“trigger” words&am…...
云安全博客阅读(二)
2024-05-30 Cloudflare acquires BastionZero to extend Zero Trust access to IT infrastructure IT 基础设施的零信任 不同于应用安全,基础设置的安全的防护紧急程度更高,基础设施的安全防护没有统一的方案IT基础设施安全的场景多样,如se…...
SpringCloud系列教程:微服务的未来(六)docker教程快速入门、常用命令
对于开发人员和运维工程师而言,掌握 Docker 的基本概念和常用命令是必不可少的。本篇文章将带你快速入门 Docker,并介绍一些最常用的命令,帮助你更高效地进行开发、测试和部署。 目录 前言 快速入门 docker安装 配置镜像加速 部署Mysql …...
Vue 快速入门:开启前端新征程
在当今的 Web 开发领域,Vue.js 作为一款极具人气的 JavaScript 前端框架,正被广泛应用于各类项目之中。它以简洁的语法、高效的数据绑定机制以及强大的组件化开发模式,为开发者们带来了前所未有的开发体验。如果你渴望踏入前端开发的精彩世界…...
UVM:uvm_component methods configure
topic UVM component base class uvm_config_db 建议使用uvm_config_db代替uvm_resource_db uvm factory sv interface 建议:uvm_config_db 以下了解 建议打印error...
LLM 训练中存储哪些矩阵:权重矩阵,梯度矩阵,优化器状态
LLM 训练中存储哪些矩阵 目录 LLM 训练中存储哪些矩阵深度学习中梯度和优化器是什么在 LLM 训练中通常会存储以下矩阵: 权重矩阵:这是模型的核心组成部分。例如在基于 Transformer 架构的 LLM 中,每一层的多头注意力机制和前馈神经网络都会有相应的权重矩阵。以 BERT 模型为…...
大模型思维链推理的进展、前沿和未来分析
大模型思维链推理的综述:进展、前沿和未来 "Chain of Thought Reasoning: A State-of-the-Art Analysis, Exploring New Horizons and Predicting Future Directions." 思维链推理的综述:进展、前沿和未来 摘要:思维链推理&#…...
NLP 技术的突破与未来:从词嵌入到 Transformer
在过去的十年中,自然语言处理(NLP)经历了深刻的技术变革。从早期的统计方法到深度学习的应用,再到如今Transformer架构的普及,NLP 的发展不仅提高了模型的性能,还扩展了其在不同领域中的应用边界。 1. 词嵌…...
嵌入式中QT实现文本与线程控制方法
第一:利用QT进行文件读写实现 利用QT进行读写文本的时候进行读写,读取MP3歌词的文本,对这个文件进行读写操作。 实例代码,利用Qfile,对文件进行读写。 //读取对应文件文件,头文件的实现。 #ifndef MAINWINDOW_H #define MAINWINDOW_H#include <QMainWindow> #incl…...
云备份项目--服务端编写
文章目录 7. 数据管理模块7.1 如何设计7.2 完整的类 8. 热点管理8.1 如何设计8.2 完整的类 9. 业务处理模块9.1 如何设计9.2 完整的类9.3 测试9.3.1 测试展示功能 完整的代码–gitee链接 7. 数据管理模块 TODO: 读写锁?普通锁? 7.1 如何设计 需要管理…...
Node.js——fs(文件系统)模块
个人简介 👀个人主页: 前端杂货铺 🙋♂️学习方向: 主攻前端方向,正逐渐往全干发展 📃个人状态: 研发工程师,现效力于中国工业软件事业 🚀人生格言: 积跬步…...
SAP BC 同服务器不同client之间的传输SCC1
源配置client不需要释放 登录目标client SCC1...
CentOS: RPM安装、YUM安装、编译安装(详细解释+实例分析!!!)
目录 1.什么是RPM 1.1 RPM软件包命名格式 1.2RPM功能 1.3查询已安装的软件:rpm -q 查询已安装软件的信息 1.4 挂载:使用硬件(光驱 硬盘 u盘等)的方法(重点!!!) 1…...
linux音视频采集技术: v4l2
简介 在 Linux 系统中,视频设备的支持和管理离不开 V4L2(Video for Linux 2)。作为 Linux 内核的一部分,V4L2 提供了一套统一的接口,允许开发者与视频设备(如摄像头、视频采集卡等)进行交互。无…...
MySQL使用navicat新增触发器
找到要新增触发器的表,然后点击设计,找到触发器标签。 根据实际需要,填写相关内容,操作完毕,点击保存按钮。 在右侧的预览界面,可以看到新生成的触发器脚本...
voice agent实现方案调研
前言 目前语音交互主要的实现大体有两种: 级联方案,指的是,大规模语言模型 (LLM)、文本转语音 (TTS) 和语音转文本 (STT),客户的话通过vad断句到STT的语音转文本,经过大模型进行生成文本,生成文本后通过TTS进行回复给用户。(主流方案)端到端的方案,开发者无需再…...
TCP通信原理学习
TCP三次握手和四次挥手以及为什么_哔哩哔哩_bilibili...
Three.js 基础概念:构建3D世界的核心要素
文章目录 前言一、场景(Scene)二、相机(Camera)三、渲染器(Renderer)四、物体(Object)五、材质(Material)六、几何体(Geometry)七、光…...
如何用代码提交spark任务并且获取任务权柄
在国内说所有可能有些绝对,因为确实有少数大厂技术底蕴确实没的说能做出自己的东西,但其他的至少95%数据中台平台研发方案,都是集群中有一个持久化的程序,来接收任务信息,并向集群提交任务同时获取任务的权柄ÿ…...
关于Mac中的shell
1 MacOS中的shell 介绍: 在 macOS 系统中,Shell 是命令行与系统交互的工具,用于执行命令、运行脚本和管理系统。macOS 提供了多种 Shell,主要包括 bash 和 zsh。在 macOS Catalina(10.15)之前,…...
JavaSec-RCE
简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性,…...
docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...
中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...
JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
Linux 内存管理实战精讲:核心原理与面试常考点全解析
Linux 内存管理实战精讲:核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用,还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...
作为测试我们应该关注redis哪些方面
1、功能测试 数据结构操作:验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化:测试aof和aof持久化机制,确保数据在开启后正确恢复。 事务:检查事务的原子性和回滚机制。 发布订阅:确保消息正确传递。 2、性…...
Linux部署私有文件管理系统MinIO
最近需要用到一个文件管理服务,但是又不想花钱,所以就想着自己搭建一个,刚好我们用的一个开源框架已经集成了MinIO,所以就选了这个 我这边对文件服务性能要求不是太高,单机版就可以 安装非常简单,几个命令就…...
Python网页自动化Selenium中文文档
1. 安装 1.1. 安装 Selenium Python bindings 提供了一个简单的API,让你使用Selenium WebDriver来编写功能/校验测试。 通过Selenium Python的API,你可以非常直观的使用Selenium WebDriver的所有功能。 Selenium Python bindings 使用非常简洁方便的A…...
