当前位置: 首页 > news >正文

人工智能 前馈神经网络练习题

为了构建一个有两个输入( X 1 X_1 X1 X 2 X_2 X2)和一个输出的单层感知器,并进行分类,我们需要计算权值 w 1 w_1 w1 w 2 w_2 w2的更新过程。以下是详细的步骤和计算过程:

  1. 初始化参数
    初始权值: w 1 = 0.1 w_1=0.1 w1=0.1, w 2 = 0.1 w_2=0.1 w2=0.1
    阈值(激活函数的阈值): θ = 0.6 \theta=0.6 θ=0.6
    学习率: η = 0.6 \eta=0.6 η=0.6
  2. 激活函数
    使用硬限幅函数(阶跃函数):
  • 如果 y ≥ θ y\geq\theta yθ,输出 1 1 1
  • 如果 y < θ y<\theta y<θ,输出 0 0 0
  1. 数据集
X 1 X_1 X1 X 2 X_2 X2目标输出 d d d
000
010
100
111
  1. 迭代优化权值
    我们将进行多次迭代,直到输出误差达到零。

迭代过程
对每一对输入 ( X 1 , X 2 ) (X_1,X_2) (X1,X2)和目标输出 d d d,进行计算和更新。

  • 迭代1
    输入: ( 0 , 0 ) (0,0) (0,0), 目标输出 d = 0 d=0 d=0
    计算: y = w 1 × 0 + w 2 × 0 = 0 y=w_1\times0+w_2\times0=0 y=w1×0+w2×0=0
    输出: 0 < 0.6 0<0.6 0<0.6 → 输出 0 0 0(正确)
    无需更新权值。
  • 迭代2
    输入: ( 0 , 1 ) (0,1) (0,1), 目标输出 d = 0 d=0 d=0
    计算: y = w 1 × 0 + w 2 × 1 = 0.1 y=w_1\times0+w_2\times1=0.1 y=w1×0+w2×1=0.1
    输出: 0.1 < 0.6 0.1<0.6 0.1<0.6 → 输出 0 0 0(正确)
    无需更新权值。
  • 迭代3
    输入: ( 1 , 0 ) (1,0) (1,0), 目标输出 d = 0 d=0 d=0
    计算: y = w 1 × 1 + w 2 × 0 = 0.1 y=w_1\times1+w_2\times0=0.1 y=w1×1+w2×0=0.1
    输出: 0.1 < 0.6 0.1<0.6 0.1<0.6 → 输出 0 0 0(正确)
    无需更新权值。
  • 迭代4
    输入: ( 1 , 1 ) (1,1) (1,1), 目标输出 d = 1 d=1 d=1
    计算: y = w 1 × 1 + w 2 × 1 = 0.1 + 0.1 = 0.2 y=w_1\times1+w_2\times1=0.1+0.1=0.2 y=w1×1+w2×1=0.1+0.1=0.2
    输出: 0.2 < 0.6 0.2<0.6 0.2<0.6 → 输出 0 0 0(错误)
    更新权值:
    误差 e = d − y = 1 − 0 = 1 e=d-y=1-0=1 e=dy=10=1
    更新:
    w 1 = w 1 + η ⋅ e ⋅ X 1 = 0.1 + 0.6 ⋅ 1 ⋅ 1 = 0.7 w_1=w_1+\eta\cdot e\cdot X_1=0.1+0.6\cdot1\cdot1=0.7 w1=w1+ηeX1=0.1+0.611=0.7
    w 2 = w 2 + η ⋅ e ⋅ X 2 = 0.1 + 0.6 ⋅ 1 ⋅ 1 = 0.7 w_2=w_2+\eta\cdot e\cdot X_2=0.1+0.6\cdot1\cdot1=0.7 w2=w2+ηeX2=0.1+0.611=0.7
  • 迭代5
    输入: ( 0 , 0 ) (0,0) (0,0), 目标输出 d = 0 d=0 d=0
    计算: y = 0.7 × 0 + 0.7 × 0 = 0 y=0.7\times0+0.7\times0=0 y=0.7×0+0.7×0=0
    输出: 0 < 0.6 0<0.6 0<0.6 → 输出 0 0 0(正确)
    无需更新权值。
  • 迭代6
    输入: ( 0 , 1 ) (0,1) (0,1), 目标输出 d = 0 d=0 d=0
    计算: y = 0.7 × 0 + 0.7 × 1 = 0.7 y=0.7\times0+0.7\times1=0.7 y=0.7×0+0.7×1=0.7
    输出: 0.7 ≥ 0.6 0.7\geq0.6 0.70.6 → 输出 1 1 1(错误)
    更新权值:
    误差 e = d − y = 0 − 1 = − 1 e=d-y=0-1=-1 e=dy=01=1
    更新:
    w 1 = 0.7 + 0.6 ⋅ ( − 1 ) ⋅ 0 = 0.7 w_1=0.7+0.6\cdot(-1)\cdot0=0.7 w1=0.7+0.6(1)0=0.7
    w 2 = 0.7 + 0.6 ⋅ ( − 1 ) ⋅ 1 = 0.1 w_2=0.7+0.6\cdot(-1)\cdot1=0.1 w2=0.7+0.6(1)1=0.1
  • 迭代7
    输入: ( 1 , 0 ) (1,0) (1,0), 目标输出 d = 0 d=0 d=0
    计算: y = 0.7 × 1 + 0.1 × 0 = 0.7 y=0.7\times1+0.1\times0=0.7 y=0.7×1+0.1×0=0.7
    输出: 0.7 ≥ 0.6 0.7\geq0.6 0.70.6 → 输出 1 1 1(错误)
    更新权值:
    误差 e = d − y = 0 − 1 = − 1 e=d-y=0-1=-1 e=dy=01=1
    更新:
    w 1 = 0.7 + 0.6 ⋅ ( − 1 ) ⋅ 1 = 0.1 w_1=0.7+0.6\cdot(-1)\cdot1=0.1 w1=0.7+0.6(1)1=0.1
    w 2 = 0.1 + 0.6 ⋅ ( − 1 ) ⋅ 0 = 0.1 w_2=0.1+0.6\cdot(-1)\cdot0=0.1 w2=0.1+0.6(1)0=0.1
  • 迭代8
    输入: ( 1 , 1 ) (1,1) (1,1), 目标输出 d = 1 d=1 d=1
    计算: y = 0.1 × 1 + 0.1 × 1 = 0.2 y=0.1\times1+0.1\times1=0.2 y=0.1×1+0.1×1=0.2
    输出: 0.2 < 0.6 0.2<0.6 0.2<0.6 → 输出 0 0 0(错误)
    更新权值:
    误差 e = d − y = 1 − 0 = 1 e=d-y=1-0=1 e=dy=10=1
    更新:
    w 1 = 0.1 + 0.6 ⋅ 1 ⋅ 1 = 0.7 w_1=0.1+0.6\cdot1\cdot1=0.7 w1=0.1+0.611=0.7
    w 2 = 0.1 + 0.6 ⋅ 1 ⋅ 1 = 0.7 w_2=0.1+0.6\cdot1\cdot1=0.7 w2=0.1+0.611=0.7
  • 迭代9
    重复之前的步骤,经过几轮迭代,会发现权值在震荡。
    继续更新,最终会收敛。

收敛
经过多次迭代,直到所有的输出都与目标一致,即可停止。

相关文章:

人工智能 前馈神经网络练习题

为了构建一个有两个输入&#xff08; X 1 X_1 X1​、 X 2 X_2 X2​&#xff09;和一个输出的单层感知器&#xff0c;并进行分类&#xff0c;我们需要计算权值 w 1 w_1 w1​和 w 2 w_2 w2​的更新过程。以下是详细的步骤和计算过程&#xff1a; 初始化参数 初始权值&#xff1a…...

Windows搭建RTMP服务器

目录 一、Nginx-RTMP服务器搭建1、下载Nginx2、下载Nginx的RTMP扩展包3、修改配置文件4、启动服务器5、查看服务器状态6、其它ngnix命令 二、OBS推流1 、推流设置2、查看服务器状态 三、VLC拉流四、补充 本文转载自&#xff1a;Windows搭建RTMP服务器OBS推流VLC拉流_浏览器查看…...

Vue重新加载子组件

背景&#xff1a;组件需要重新加载&#xff0c;即重新走一遍组件的生命周期常见解决方案&#xff1a; 使用v-if指令&#xff1a;v-if 可以实现 true (加载)和 false (卸载) async reloadComponent() {this.show false// 加上 nextTick this.$nextTick(function() {this.show…...

【VScode】设置代理,通过代理连接服务器

文章目录 VScode编辑器设置代理1.图形化界面1.1 进入proxy设置界面1.2 配置代理服务器 2.配置文件&#xff08;推荐&#xff09;2.1 打开setting.json 文件2.2 配置代理 VScode编辑器设置代理 根据情况安装nmap 1.图形化界面 1.1 进入proxy设置界面 或者使用快捷键ctrl , 。…...

js es6 reduce函数, 通过规格生成sku

const specs [{ name: 颜色, values: [红色, 蓝色, 绿色] },{ name: 尺寸, values: [S, M, L] } ];function generateSKUs(specs) {return specs.reduce((acc, spec) > {const newAcc [];for (const combination of acc) {for (const value of spec.values) {newAcc.push(…...

基于R语言的DICE模型

DICE型是运用最广泛的综合模型之一。DICE和RICE模型虽然代码量不多&#xff0c;但涉及经济学与气候变化&#xff0c;原理较为复杂。 一&#xff1a;DICE模型的原理与推导 1.经济学 2.气候变化问题 3.DICE模型的经济学部分 4.DICE模型的气候相关部分 5.DICE模型的目标函数…...

【C】PAT 1006-1010

1006 换个格式输出整数 让我们用字母 B 来表示“百”、字母 S 表示“十”&#xff0c;用 12...n 来表示不为零的个位数字 n&#xff08;<10&#xff09;&#xff0c;换个格式来输出任一个不超过 3 位的正整数。例如 234 应该被输出为 BBSSS1234&#xff0c;因为它有 2 个“…...

力扣双指针-算法模版总结

lc-15.三数之和 &#xff08;时隔13天&#xff09; 目前可通过&#xff0c;想法上无逻辑问题&#xff0c;一点细节小错误需注意即可 lc-283.移动零&#xff08;时隔16天&#xff09; 总结&#xff1a;观察案例直觉就是双指针遇零交换&#xff0c;两次实现都通过了&#xff0c…...

解释一下:运放的输入偏置电流

输入偏置电流 首先看基础部分:这就是同相比例放大器 按照理论计算,输入VIN=0时,输出VOUT应为0,对吧 仿真与理论差距较大,有200多毫伏的偏差,这就是输入偏置电流IBIAS引起的,接着看它的定义 同向和反向输入电流的平均值,也就是Ib1、Ib2求平均,即(Ib1+Ib2)/2 按照下面…...

Windows 11 上通过 WSL (Windows Subsystem for Linux) 安装 MySQL 8

在 Windows 11 上通过 WSL (Windows Subsystem for Linux) 安装 MySQL 8 的步骤如下&#xff1a; ✅ 1. 检查 WSL 的安装 首先确保已经安装并启用了 WSL 2。 &#x1f527; 检查 WSL 版本 打开 PowerShell&#xff0c;执行以下命令&#xff1a; wsl --list --verbose确保 W…...

信用租赁系统助力企业实现免押金租赁新模式

内容概要 在现代商业环境中&#xff0c;信用租赁正在迅速崛起。通过结合大数据与区块链技术&#xff0c;信用租赁系统彻底改变了传统的租赁流程。什么是信用租赁呢&#xff1f;简单说&#xff0c;就是不需要押金&#xff0c;你也能够租到你想要的物品&#xff0c;这对企业和消…...

OSPF特殊区域(open shortest path first LSA Type7)

一、区域介绍 1、Stub区域 Stub区域是一种可选的配置属性。通常来说&#xff0c;Stub区域位于自治系统的边界&#xff0c;例如&#xff0c;只有一 个ABR的非骨干区域。在这些区域中&#xff0c;设备的路由表规模以及路由信息传递的数量都会大量减少。 kill 4 5类type 传递1 …...

Element-plus表单总结

表单包含输入框&#xff0c;单选框&#xff0c;下拉选择&#xff0c;多选框等用户输入的组件。输入表单&#xff0c;您可以收集、验证和提交数据。 经典表单 最基础的表单包括各种输入表单项&#xff0c;比如input、select、radio、checkbox等。 在每一个form组件中&#xff0…...

unity学习13:gameobject的组件component以及tag, layer 归类

目录 1 gameobject component 是unity的基础 1.1 类比 1.2 为什么要这么设计&#xff1f; 2 从空物体开始 2.1 创建2个物体 2.2 给 empty gameobject添加组件 3 各种组件和新建组件 3.1 点击 add component可以添加各种组件 3.2 新建组件 3.3 组件的操作 3.4 特别的…...

51单片机——中断(重点)

学习51单片机的重点及难点主要有中断、定时器、串口等内容&#xff0c;这部分内容一定要认真掌握&#xff0c;这部分没有学好就不能说学会了51单片机 1、中断系统 1.1 概念 中断是为使单片机具有对外部或内部随机发生的事件实时处理而设置的&#xff0c;中断功能的存在&#…...

企业级Java 实体对象类定义规范

1. 查询参数类 (Query) 命名规则: xxxQuery.java用途: 用于封装查询操作的请求参数&#xff0c;通常包含分页、过滤、排序等字段。与数据库查询或 API 请求紧密相关。示例: ProductQuery.java、UserQuery.java使用场景: 查询条件的封装&#xff0c;发送查询请求时使用。 2. 返…...

【网络云SRE运维开发】2025第2周-每日【2025/01/07】小测-【第7章 GVRP链路捆绑】理论和实操

文章目录 一、理论题1.1 GVRP协议在华为设备中的主要作用是什么&#xff1f;1.2 在华为交换机上&#xff0c;配置GVRP时&#xff0c;端口的注册模式有哪些&#xff1f;并简要说明其特点。1.3 简述华为设备中GVRP协议的工作过程。1.4 在华为交换机上配置GVRP时&#xff0c;如果两…...

蓝桥杯算法|练习记录

位运算 按位与运算符&#xff08;&&#xff09; 运算规则&#xff1a;两位同时为1&#xff0c;结果才为1&#xff0c;否则结果为0。例如&#xff0c; -3&#xff08;在计算机中表示为1101&#xff09;&5&#xff08;0101&#xff09; 0101&#xff08;即十进制的1&…...

C语言 扫雷程序设计

目录 1.main函数 2.菜单打印menu函数 3.游戏game函数 4.宏定义 5.界面初始化 6.打印界面 7.设置雷 8.统计排查坐标周围雷的个数 9.排查雷 10.总代码 test.c代码 game.h代码 game.c代码 结语&#xff1a; 一个简单的扫雷游戏&#xff0c;通过宏定义可以修改行列的…...

CSS语言的文件操作

CSS语言文件操作浅析 CSS&#xff08;层叠样式表&#xff09;是一种用于描述HTML文档表现的样式表语言。它负责设置网页的视觉效果&#xff0c;包括文字、颜色、布局等。然而&#xff0c;CSS不仅仅是用于修饰页面&#xff0c;它在现代开发中的作用正变得愈发重要。在本文中&am…...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手&#xff1a;借助大模型技术&#xff0c;开发能根据用户输入的主题、风格等要求&#xff0c;生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用&#xff0c;帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接&#xff1a;3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06&#xff08;十亿美元&#xff09;。漏洞扫描服务市场行业预计将从 2024 年的 3.48&#xff08;十亿美元&#xff09;增长到 2032 年的 9.54&#xff08;十亿美元&#xff09;。预测期内漏洞扫描服务市场 CAGR&#xff08;增长率&…...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序&#xff0c;以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务&#xff0c;提供稳定高效的数据处理与业务逻辑支持&#xff1b;利用 uniapp 实现跨平台前…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...

管理学院权限管理系统开发总结

文章目录 &#x1f393; 管理学院权限管理系统开发总结 - 现代化Web应用实践之路&#x1f4dd; 项目概述&#x1f3d7;️ 技术架构设计后端技术栈前端技术栈 &#x1f4a1; 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 &#x1f5c4;️ 数据库设…...

Python Ovito统计金刚石结构数量

大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...

Go语言多线程问题

打印零与奇偶数&#xff08;leetcode 1116&#xff09; 方法1&#xff1a;使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...