当前位置: 首页 > news >正文

蓝桥杯 第十五届 研究生组 B题 召唤数学精灵

 问题描述:

        数学家们发现了两种用于召唤强大的数学精灵的仪式,这两种仪式分别被称为累加法仪式 A(n) 和累乘法仪式 B(n)。累加法仪式 A(n) 是将从 1 到 n 的所有数字进行累加求和,即:A(n)=1+2+⋯+n累乘法仪式 B(n) 则是将从 1 到 n 的所有数字进行累乘求积,即:B(n)=1×2×⋯×n据说,当某个数字 i 满足 A(i)−B(i) 能被 100 整除时,数学精灵就会被召唤出来。现在,请你寻找在 1 到 2024041331404202 之间有多少个数字 i,能够成功召唤出强大的数学精灵。

答案提交:

        这是一道结果填空题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。

解题思路:

        由于查找的数过多,所以一定不是使用的for循环来解题,而是从中查找规律,所以先遍历前1000个数字,发现除前两个符合要求的数字,其余的数字%200都应该是0、24、175、199,所以可以直接计算出2024041331404202中一共有多少个200的组,并且判断2024041331404202%200的数字应该处于哪个区间(以0、24、175、199来划分区间),最终就可以得到可以召唤数学精灵的个数。

注意:

        ①可以召唤精灵的个数应该为long long类型,其超出了int型可以表示的范围;

        ②第一个200的组,其有5个符合要求的数字,所以最后应该要+1。

代码:

找规律代码:

//找规律
int A = 0, B = 1;    //记录A(i)%100和B(i)%100
cout << "i" << '\t' << "A" << '\t' << "B" << '\t' << "number" << endl;
for (int i = 1;i < 1000;i++)
{A = (A + i) % 100;B = (B * i) % 100;	if (A == B)   //为想要的i{number++;cout << i << '\t' << A << '\t' << B << '\t' << number << endl;}
}

规律输出: 

i       A       B       number
1       1       1       1
3       6       6       2
24      0       0       3
175     0       0       4
199     0       0       5
200     0       0       6
224     0       0       7
375     0       0       8
399     0       0       9
400     0       0       10
424     0       0       11
575     0       0       12
599     0       0       13
600     0       0       14
624     0       0       15
775     0       0       16
799     0       0       17
800     0       0       18
824     0       0       19
975     0       0       20
999     0       0       21

main函数:

#include <iostream>
using namespace std;
int main()
{请在此输入您的代码long long number = 0;    //记录i的个数number = 2024041331404202 / 200 * 4 + 1;    //可以被200整除的部分,其中+1是指前199个数中,有1、3、24、175、199五个符合要求的数字,比后面每200个多一个,所以要+1int left = 2024041331404202 % 200;if (left < 24){number++;}else if (left < 175){number += 2;}else if (left < 199){number += 3;}else{number += 4;}cout << number;return 0;
}

运行结果:

40480826628086

相关文章:

蓝桥杯 第十五届 研究生组 B题 召唤数学精灵

问题描述&#xff1a; 数学家们发现了两种用于召唤强大的数学精灵的仪式&#xff0c;这两种仪式分别被称为累加法仪式 A(n) 和累乘法仪式 B(n)。累加法仪式 A(n) 是将从 1 到 n 的所有数字进行累加求和&#xff0c;即&#xff1a;A(n)12⋯n累乘法仪式 B(n) 则是将从 1 到 n 的所…...

在 Go 应用中 如何像 FastAPI 一样优雅地构建控制器

文章精选推荐 1 JetBrains Ai assistant 编程工具让你的工作效率翻倍 2 Extra Icons&#xff1a;JetBrains IDE的图标增强神器 3 IDEA插件推荐-SequenceDiagram&#xff0c;自动生成时序图 4 BashSupport Pro 这个ides插件主要是用来干嘛的 &#xff1f; 5 IDEA必装的插件&…...

用户界面的UML建模11

然而&#xff0c;在用户界面方面&#xff0c;重要的是要了解《boundary》类是如何与这个异常分层结构进行关联的。 《exception》类的对象可以作为《control》类的对象。因此&#xff0c;《exception》类能够聚合《boundary》类。 参见图12&#xff0c;《exception》Database…...

历代iPhone运行内存大小和电池容量信息

系列设备名称充电端口标配充电线PD快充无线充电 (W)标配充电器电池容量 (mAh)发布时间RAM运存iPhone 16iPhone 16 Pro MaxUSB Type-CUSB-C to USB-C支持25无47472024/9/108GB LPDDR5XiPhone 16 ProUSB Type-CUSB-C to USB-C支持25无35772024/9/108GB LPDDR5XiPhone 16 PlusUSB …...

计算机网络之---物理层设备

什么是物理层设备 物理层设备是指负责数据在物理媒介上传输的硬件设备&#xff0c;它们主要处理数据的转换、信号的传输与接收&#xff0c;而不涉及数据的内容或意义。常见的物理层设备包括网卡、集线器、光纤收发器、调制解调器等。 物理层设备有哪些 1、网卡&#xff08;N…...

57. Three.js案例-创建一个带有聚光灯和旋转立方体的3D场景

57. Three.js案例-创建一个带有聚光灯和旋转立方体的3D场景 实现效果 该案例实现了使用Three.js创建一个带有聚光灯和旋转立方体的3D场景。 知识点 WebGLRenderer&#xff08;WebGL渲染器&#xff09; THREE.WebGLRenderer 是 Three.js 中用于将场景渲染为 WebGL 内容的核…...

第八讲 一元函数积分学的概念和性质

不定积分 1.原函数与不定积分 需知道&#xff1a;F(X)可导必连续 2.原函数&#xff08;不定积分&#xff09;存在定理 (1)连续函数f(x)必有原函数F(x) (2)含有第一类间断点和无穷间断点的函数f(x)在包含该间断点的区间内必没有原函数F(x). 速记&#xff1a;只有震荡可能有…...

ADMM原理及应用

文章目录 1. ADMM原理1.1. 数学形式1.2. 传统“乘子法”和它的不足1.3. ADMM 的核心思想&#xff1a;分步做1.4. Scaled Form of ADMM1.5. 迭代过程中主要检查的两大残差1.6. 怎么设置停止准则(Stopping Criteria)&#xff1f;1.7. 自适应调整罚参数 ρ \rho ρ&#xff08;又…...

mysql之sql的优化方案(重点)

1、全字段匹配是最棒的 假如一个Staffs 这个表&#xff0c;将 name,age ,pos 组合成了一个联合索引&#xff0c;在where条件下&#xff0c;能够使用到的索引越多越好。 EXPLAIN SELECT * FROM staffs WHERE NAME July; EXPLAIN SELECT * FROM staffs WHERE NAME July AND age…...

【LeetCode】303. 区域和检索 - 数组不可变

目录 描述Python1. 前缀和 描述 给定一个整数数组nums&#xff0c;处理以下类型的多个查询&#xff1a;计算索引left和right&#xff08;包含left和right&#xff09;之间的nums元素的 和 &#xff0c;其中left < right 实现NumArray类&#xff1a; NumArray(int[] nums)&a…...

前端开发 vue 中如何实现 u-form 多个form表单同时校验

在 Vue 项目中使用 UView UI 的 u-form 组件时&#xff0c;多个表单同时校验的需求非常常见。例如&#xff0c;当我们有多个表单需要在同一个页面中进行校验并提交时&#xff0c;我们需要确保每个表单都能进行单独验证&#xff0c;同时可以在同一时刻进行批量验证。 接下来&am…...

【网络】什么是速率 (Rate)带宽 (Bandwidth)吞吐量 (Throughput)?

注意单位&#xff1a; 在 kbps、Mbps、Gbps 中&#xff0c;前面的 k、M、G 是 国际单位制(SI) 的前缀&#xff0c;表示不同的数量级&#xff1a; k&#xff08;千/kilo&#xff09;: (10^3 1,000) kbps&#xff08;kilobits per second&#xff09;: 每秒 1,000 位&#xff08…...

(leetcode算法题)769. 最多能完成排序的块

Q1. 是否能用贪心算法&#xff1f;为什么&#xff1f; 先预设一个策略&#xff0c;每当当前的nums[i]满足可以 "成块"&#xff0c;就直接让这个数成块&#xff0c;也就是说之后的遍历过程中不会将这个数在考虑到自己的块内&#xff0c; "成块" 是指只要只…...

高光谱相机的特点

光谱特性 高光谱分辨率&#xff1a;能将光谱范围分割成极窄的波段&#xff0c;光谱分辨率通常达到纳米级甚至亚纳米级&#xff0c;可精确捕捉到不同物质在细微光谱差异上的特征&#xff0c;比如可以区分不同种类的植被因叶绿素含量等差异而在光谱上的细微变化。 多波段探测&a…...

《Spring Framework实战》8:4.1.3.Bean 概述

欢迎观看《Spring Framework实战》视频教程 Spring IoC 容器管理一个或多个 bean。这些 bean 是使用 您提供给容器的配置元数据&#xff08;例如&#xff0c;以 XML <bean/>定义的形式&#xff09;。 在容器本身中&#xff0c;这些 bean 定义表示为BeanDefinition对象&a…...

BGP的local_preference本地优先级属性

一、BGP的local preference属性简介 1、local preference公认任意属性 当一条BGP路由器中存在多条去往同一目标网络的BGP路由时&#xff0c;BGP协议会对这些BGP路由属性进行比较&#xff0c;从而筛选出最佳到达目标网络的通达路径。本地优先属性&#xff0c;只在IBGP对等体之间…...

IP地址与端口号

ip地址与端口号 IP地址和端口号是网络通信中的两个重要概念&#xff0c;它们共同构成了网络通信的基础。 IP地址&#xff1a;网络世界的门牌号 定义&#xff1a;IP地址&#xff08;Internet Protocol Address&#xff09;是分配给网络设备的数字标签&#xff0c;用于在计算机网…...

Fastapi + vue3 自动化测试平台(2)--日志中间件

FastAPI Vue3 自动化测试平台&#xff08;2&#xff09;-- 日志中间件 前言 在开发和运行自动化测试平台时&#xff0c;日志功能是至关重要的一部分。日志不仅能帮助我们快速定位和解决问题&#xff0c;还能作为平台运行的记录依据&#xff0c;为后续分析和优化提供参考。 …...

iOS - AutoreleasePool

1. 基本数据结构 // AutoreleasePool 的基本结构 struct AutoreleasePoolPage {static pthread_key_t const key AUTORELEASE_POOL_KEY;magic_t const magic;id *next; // 指向下一个可存放对象的地址pthread_t const thread; // 所属线程AutoreleasePoolPage …...

1.CSS的复合选择器

1.1 什么是复合选择器 在CSS中&#xff0c;可以根据选择器的类型把选择器分为基础选择器和复合选择器&#xff0c;复合选择器是建立在基础选择器之上&#xff0c;对基础选择器进行组合形成的。 复合选择器可以更精准、更高效的选择目标元素&#xff08;标签&#xff09; 复…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

【Oracle】分区表

个人主页&#xff1a;Guiat 归属专栏&#xff1a;Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

springboot整合VUE之在线教育管理系统简介

可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生&#xff0c;小白用户&#xff0c;想学习知识的 有点基础&#xff0c;想要通过项…...

push [特殊字符] present

push &#x1f19a; present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中&#xff0c;push 和 present 是两种不同的视图控制器切换方式&#xff0c;它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...