当前位置: 首页 > news >正文

最好用的图文识别OCR -- PaddleOCR(2) 提高推理效率(PPOCR模型转ONNX模型进行推理)

在实际推理过程中,使用 PaddleOCR 模型时效率较慢,经测试每张图片的检测与识别平均耗时超过 5 秒,这在需要大规模自动化处理的场景中无法满足需求。为此,我尝试将 PaddleOCR 模型转换为 ONNX 格式进行推理,以提升效率。以下是模型转换与使用的完整过程记录。


基于项目

本次转换基于 GitHub 上的 OnnxOCR 项目,仓库地址如下:
https://github.com/jingsongliujing/OnnxOCR

项目的介绍图如下:
OnnxOCR 项目介绍

优化后的代码参考: https://github.com/CKboss/pp_onnx
本文使用到的模型转换工具: Paddle2ONNX


1. 环境准备

1.1 安装必要工具和依赖:

pip install paddle2onnx
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -r requirements.txt

1.2 下载模型与相关资源:

PaddleOCR官方模型列表:https://paddlepaddle.github.io/PaddleOCR/latest/ppocr/model_list.html

以下为本文用到的模型及其下载地址:

  • 中文检测模型:ch_PP-OCRv4_server_det
    下载链接

  • 中文识别模型:ch_PP-OCRv4_server_rec
    下载链接

  • 文本方向分类模型:ch_ppocr_mobile_v2.0_cls
    下载链接

  • 中文字典:ppocr_keys_v1
    下载链接

  • 中文字体:simfang.ttf
    下载链接

分别下载并解压上面的模型列表 & 字典文件 & 中文字体 留作备用

1.3 配置PaddleOCR的运行环境
参考上一篇文章中的 PaddleOCR 高精度版本 配置:
最好用的图文识别OCR – PaddleOCR(1) 快速集成


2. 模型转换

下载 OnnxOCR 项目代码:

git clone https://github.com/jingsongliujing/OnnxOCR.git

转换 PaddleOCR 模型为 ONNX:
使用之前下载好的模型文件开始进行模型转换,以下命令用于将 PaddleOCR 的检测、识别和方向分类模型分别转换为 ONNX 格式。

# 检测模型转换
paddle2onnx --model_dir ./ch_PP-OCRv4_det_server_infer \--model_filename inference.pdmodel \--params_filename inference.pdiparams \--save_file ./ch_PP-OCRv4_server_det.onnx \--opset_version 11 --enable_onnx_checker True# 识别模型转换
paddle2onnx --model_dir ./ch_PP-OCRv4_rec_server_infer \--model_filename inference.pdmodel \--params_filename inference.pdiparams \--save_file ./ch_PP-OCRv4_server_rec.onnx \--opset_version 11 --enable_onnx_checker True# 方向分类模型转换
paddle2onnx --model_dir ./ch_ppocr_mobile_v2.0_cls_infer \--model_filename inference.pdmodel \--params_filename inference.pdiparams \--save_file ./ch_ppocr_mobile_v2.0_cls.onnx \--opset_version 11 --enable_onnx_checker True

模型文件的最终存放结构如下:
模型存放目录结构


3. 转换后效果测试

测试图片示例:

测试图片

使用 PaddleOCR 模型进行推理:

以下代码演示 PaddleOCR 的推理流程:

from paddlex import create_pipeline
import cv2
import timetime1 = time.time()
pipeline = create_pipeline(pipeline="../OCR.yaml",device='cpu')image = cv2.imread("../tb-img/img9.webp")
output = pipeline.predict(image)
time_count = time.time() - time1for res in output:print(res.get("rec_text"),res.get("dt_scores"))
print(f'------------------------ 总花费时间: {time_count} 秒----------------------')
使用转换后的 ONNX 模型进行推理:

以下代码演示 ONNX 模型的推理流程:

import cv2
import time
from onnxocr.onnx_paddleocr import ONNXPaddleOcr,sav2Img
from pathlib import Path# 获取当前文件所在的目录
module_dir = Path(__file__).resolve().parent
ch_model = {"det_model_dir": f'{module_dir}/onnxocr/models/ppocrv4/det/ch/ch_PP-OCRv4_server_det.onnx',"rec_model_dir": f'{module_dir}/onnxocr/models/ppocrv4/rec/ch/ch_PP-OCRv4_server_rec.onnx',"cls_model_dir": f'{module_dir}/onnxocr/models/ppocrv4/cls/ch_ppocr_mobile_v2.0_cls.onnx',"rec_char_dict_path": f'{module_dir}/onnxocr/models/ppocrv4/rec_char_dict/ppocr_keys_v1.txt',"vis_font_path":f'{module_dir}/onnxocr/fonts/simfang.ttf'
}time1 = time.time()model = ONNXPaddleOcr(use_angle_cls=True, use_gpu=False,det_model_dir=ch_model["det_model_dir"],rec_model_dir=ch_model["rec_model_dir"],cls_model_dir=ch_model["cls_model_dir"],rec_char_dict_path=ch_model["rec_char_dict_path"],vis_font_path=ch_model["vis_font_path"],drop_score=0.1,)resized_img = cv2.imread("../tb-img/img9.webp")
# 调整尺寸
# resized_img = cv2.resize(resized_img, (960, 960))
result = model.ocr(resized_img)
time_count = time.time() - time1for res in result[0]:print(res[1][0],res[1][1])
print(f'------------------------ 总花费时间: {time_count} 秒----------------------')

结论

通过将 PaddleOCR 模型转换为 ONNX 格式,可以显著提升推理速度。测试显示,在相同硬件环境下,ONNX 模型推理效率更高,适合大规模自动化处理场景。

相关文章:

最好用的图文识别OCR -- PaddleOCR(2) 提高推理效率(PPOCR模型转ONNX模型进行推理)

在实际推理过程中,使用 PaddleOCR 模型时效率较慢,经测试每张图片的检测与识别平均耗时超过 5 秒,这在需要大规模自动化处理的场景中无法满足需求。为此,我尝试将 PaddleOCR 模型转换为 ONNX 格式进行推理,以提升效率。…...

Redis--20--大Key问题解析

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 大Key问题1.什么是 Redis 大 Key?在 Redis 中,大 Key 是指单个键值对的数据量非常大,可能包含大量数据。 2. Redis大Key的危害3.…...

新版2024AndroidStudio项目目录结构拆分

如题 下载了最新版的android studio 发现目录结构和以前不一样 自动帮你合并了 如何层层抽丝剥茧呢 按照一下步骤即可解决问题!...

STM32内置Flash

一、原理 利用flash存储用户数据需要注意查看,用户数据是否会覆盖芯片运行程序。 IAP(在程序中编程)利用程序修改程序本身,和OTA是一个原理。IAP在程序中编程支持任意一种通信下载。 ICP(在电路中编程,通…...

华为路由器、交换机、AC、新版本开局远程登录那些坑(Telnet、SSH/HTTP避坑指南)

关于华为设备远程登录配置开启的通用习惯1、HTTP/HTTPS相关服务 http secure-server enablehttp server enable 2、Telnet服务telnet server enable3、SSH服务stelnet server enablessh user admin authentication-type password 「模拟器、工具合集」复制整段内容 链接&…...

【Linux】深入理解进程信号机制:信号的产生、捕获与阻塞

🎬 个人主页:谁在夜里看海. 📖 个人专栏:《C系列》《Linux系列》《算法系列》 ⛰️ 时间不语,却回答了所有问题 目录 📚前言 📚一、信号的本质 📖1.异步通信 📖2.信…...

前端基础技术全解析:从HTML前端基础标签语言开始,逐步深入CSS样式修饰、JavaScript脚本控制、Ajax异步通信以及WebSocket持久通信

目录 前言: 1.前端技术html简单了解: 1.1HTML代码是由标签构成的。 1.2.HTML 文件基本结构 1.3.HTML 常见标签 标题标签: 段落标签: p 文本格式化标签 图片标签: 超链接标签: a 测试代码: 展示效果: 表单…...

Linux存储管理之核心秘密(The Core Secret of Linux Storage Management)

Linux存储管理之核心秘密 如果你来自Windows环境,那么Linux处理和管理存储设备的方式对你而言可能显得格外不同。我们知道,Linux的文件系统并不采用Windows那样的物理驱动器表示方式(如C:、D:或E:),而是构建了一个以&…...

excel精简使用工具

1.获取sheet1的行填充到sheet2的列 希望在 Excel 中使用 INDEX 函数从不同的列中提取数据,并且每一行都引用不同的列。为了实现这个目标,你可以使用 COLUMN 函数来动态获取列的偏移量。 为了避免手动输入每个单元格的公式,你可以使用以下公…...

Flutter鸿蒙化 在鸿蒙应用中添加Flutter页面

前言 今天这节课我们讲一下 在鸿蒙应用中添加Flutter页面。 作用: 之前有很多朋友和网友问我鸿蒙能不能使用Flutter开发,他们的项目已经用Flutter开发成熟了有什么好的方案呢,今天讲到这个就可以很好的解决他们的问题,例如我们正式项目中可能是一部分native 开发 一部分…...

为什么页面无法正确显示?都有哪些HTML和CSS相关问题?

页面无法正确显示可能由多种原因导致,通常与HTML和CSS的结构、语法错误、浏览器兼容性、资源加载等问题有关。以下是一些常见的原因及其解决方法,结合实际项目代码示例进行讲解: 1. HTML 结构错误 HTML 标签的缺失或错误可能导致页面无法正…...

如何制作一份出色的公司介绍PPT?

制作一份公司介绍的PPT需要精心设计,以确保内容既专业又吸引人。以下是一个基本的框架和一些建议,帮助您创建一份有效的公司介绍PPT: PPT标题页 标题:公司全称(可使用公司Logo作为背景或嵌入标题中)副标题…...

Selenium 进行网页自动化操作的一个示例,绕过一些网站的自动化检测。python编程

这段代码是使用 Selenium 进行网页自动化操作的一个示例,主要目的是在加载网页时执行一些自定义的 JavaScript 代码,并等待页面上某个元素的出现。以下是代码的详细解释: ### 代码解释 #### 导入必要的模块 python from selenium.webdriver…...

HashMap和HashTable的区别

1、HashMap是线程不安全的,HashTable是线程安全的 HashMap:Fail-fast 机制。表示快速失败,在集合遍历过程中,一旦发现容器中的数据被修改了,会立刻抛出ConcurrentModificationException异常,从而导致遍历失…...

使用redis来进行调优有哪些方案?

Redis的调优方案可以从多个方面进行,以下是一些常见的优化方法及代码示例: 1.使用管道(Pipelining) 管道技术可以减少客户端与Redis之间的交互次数,从而提高性能。在批量操作时,通过管道可以一次性发送多个…...

macOS 中,默认的 Clang 编译器和 Homebrew 安装的 GCC 都不包含 bits/stdc++.h 文件

在 macOS 中,默认的 Clang 编译器和 Homebrew 安装的 GCC 都不包含 bits/stdc.h 文件,因为它是一个 非标准 的头文件,主要由 MinGW 和某些 Linux 平台的 GCC 提供。 解决方案 : 手动创建 bits/stdc.h 1. 创建文件夹和文件 在你的 GCC 标准…...

2012mfc,自绘列表控件

原文 使用常用控件版本4.70中的自定义绘画功能自定义列表控件的外观. 介绍 常见控件的4.70版引入了一项叫自定义绘画的功能. 可按轻量易用的自画版本对待自定义绘画.易用性来自,即只需处理一条消息(NM_CUSTOMDRAW),且你可让窗口为你干活,因此你不必完成物主绘画中的所有粗活…...

vue3运行时执行过程步骤

在 Vue 3 中,运行时的执行过程是一个复杂但高效的机制,主要包括初始化应用、渲染、响应式更新和销毁等阶段。以下是 Vue 3 运行时的执行过程的核心步骤和流程: 1. 应用初始化 1.1 创建 Vue 应用 调用 createApp 方法,创建一个 V…...

常用的AT命令,用于查看不同类型的网络信息

文章目录 1. ATCSQ‌:2. ATCREG‌:‌3. ATCOPS‌:4. ATCGATT‌:5. ATCGPADDR‌: 在AT命令集中,用于查看网络信息的命令有多种,具体取决于所使用的设备和模块。以下是一些常用的AT命令&#xff0…...

Vue3组件通讯——自定义事件(子->父)

需求如下: 1.在子组件中,当用户点击提交按钮后,更新数据库 2.数据更新成功后,子组件通知父组件getUserInfo函数,重新获取数据,同步更新 3.子组件等待getUserInfo函数执行完毕后,调用init函数…...

SpringBoot-17-MyBatis动态SQL标签之常用标签

文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹&#xff0c;并新增内容 3.创建package文件夹...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口&#xff08;适配服务端返回 Token&#xff09; export const login async (code, avatar) > {const res await http…...

CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云

目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

基于Springboot+Vue的办公管理系统

角色&#xff1a; 管理员、员工 技术&#xff1a; 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能&#xff1a; 该办公管理系统是一个综合性的企业内部管理平台&#xff0c;旨在提升企业运营效率和员工管理水…...