Spark是什么?Flink和Spark区别
Spark是什么?Flink和Spark区别
- 一、Spark
- 二、Spark和Flink区别
- 三、总结
一、Spark
Apache Spark 是一个开源的大数据处理框架,主要用于大规模数据处理和分析。它支持多种数据处理模式,包括批处理、流处理、SQL 查询、机器学习和图处理等。
核心特点:
- 内存计算: Spark 以内存计算为核心,通过 RDD(弹性分布式数据集)将数据存储在内存中进行处理,从而提高数据处理速度.
- 统一编程模型: 提供统一的编程模型,可以在同一个框架下进行批处理和流处理,方便开发者进行数据处理任务的开发和维护.
- 丰富的生态系统: 拥有丰富的生态系统,包括 Spark SQL、Spark Streaming、MLlib(机器学习库)、GraphX(图处理库)等组件,支持多种数据处理和分析任务.
- 容错性: 通过 RDD 的不可变性和 Lineage(血统)机制实现容错,当数据丢失或节点故障时,可以重新计算丢失的数据.
- 可扩展性: 可以在多种环境中运行,包括本地模式、YARN、Mesos 和 Kubernetes 等,支持水平扩展以处理大规模数据集.
组件:
- Spark Core: 是 Spark 的基础组件,提供了基本的数据抽象(RDD)、任务调度、内存管理和容错机制等.
- Spark SQL: 提供了对 SQL 语句的支持,允许用户使用 SQL 语法进行数据查询和分析。通过 DataFrames 和 Datasets API,可以将结构化数据转换为 SQL 表,并执行 SQL 查询.
- Spark Streaming: 是 Spark 的流处理组件,使用微批处理模型来模拟流处理。它将流数据分割成小的批次进行处理,支持实时数据流的处理和分析.
- MLlib: 是 Spark 的机器学习库,提供了丰富的机器学习算法和工具,包括分类、回归、聚类、协同过滤等.
- GraphX: 是 Spark 的图处理库,提供了图数据结构和图算法,支持图数据的创建、转换和分析.
编程模型:
- RDD (Resilient Distributed Dataset): 是 Spark 的基本数据抽象,表示一个不可变的、分布式的数据集合。RDD 支持两种类型的操作:转换操作(Transformation)和行动操作(Action).
- 转换操作: 对 RDD 进行转换,生成新的 RDD,如 map、filter、flatMap 等.
- 行动操作: 对 RDD 进行计算并返回结果,如 collect、count、saveAsTextFile 等.
- DataFrame: 是一种分布式数据集合,提供了结构化的数据表示和优化的执行计划。DataFrame 与 RDD 类似,但提供了更高级的抽象和更优的性能.
- Dataset: 是 DataFrame 的扩展,提供了类型安全的数据操作和编译时检查.
使用场景:
- 批处理: 适合大规模数据的批量处理任务,如数据清洗、数据转换、数据分析等.
- 实时处理: 通过 Spark Streaming 可以处理实时数据流,适用于实时监控、实时推荐等场景.
- SQL 查询: 通过 Spark SQL 可以执行 SQL 查询,适用于数据仓库和数据湖的查询分析.
- 机器学习: 使用 MLlib 可以进行机器学习任务,如模型训练、预测等.
- 图处理: 使用 GraphX 可以处理图数据,适用于社交网络分析、推荐系统等.
编程语言:
- Apache Spark 支持多种编程语言,如:java、python、sql、R、Scala等。
二、Spark和Flink区别
Apache Flink 和 Apache Spark 都是开源的大数据处理框架,但它们在设计理念、架构和适用场景上有一些显著的区别。
核心架构:
-
Flink:
- 流处理优先: Flink 是一个流处理框架,从设计之初就以流处理为核心,批处理是流处理的特殊情况.
- 事件时间处理: 支持事件时间、处理时间和摄入时间等时间语义,特别适合实时数据流处理.
- 状态管理和容错: 提供了强大的状态管理和容错机制,如检查点(checkpointing)和状态后端.
- 低延迟和高吞吐: 能够在低延迟和高吞吐之间取得良好的平衡.
-
Spark:
- 批处理优先: 最初设计为批处理框架,后来通过 Spark Streaming 增加了流处理能力.
- 微批处理: Spark Streaming 使用微批处理模型来模拟流处理,将流数据分割成小的批次进行处理.
- 内存计算: 以内存计算为核心,通过 RDD(弹性分布式数据集)和 DataFrame API 提供高效的数据处理能力.
- 统一编程模型: 提供统一的编程模型,可以在同一个框架下进行批处理和流处理.
性能和效率:
-
Flink:
- 实时性: 由于是真正的流处理框架,能够提供更低的延迟和更实时的数据处理能力.
- 吞吐量: 在高吞吐量的场景下表现良好,尤其是在需要实时反馈的应用中.
-
Spark:
- 延迟: Spark Streaming 的微批处理模型导致其延迟相对较高,不适合对实时性要求极高的场景.
- 吞吐量: 在大规模批处理任务中表现出色,能够高效处理大规模数据集.
编程模型:
-
Flink:
- API: 提供了丰富的 API,包括 DataStream API(用于流处理)和 DataSet API(用于批处理).
- 状态管理: 开发者可以更细粒度地控制状态和时间,适合复杂的事件驱动应用.
-
Spark:
- API: 提供了 RDD、DataFrame 和 Dataset API,DataFrame 和 Dataset 提供了更高级的抽象,适合快速开发.
- SQL 支持: 通过 Spark SQL 提供了强大的 SQL 支持,适合进行数据查询和分析.
生态系统和社区:
-
Flink:
- 生态系统: 拥有丰富的生态系统,包括 Flink ML(机器学习库)、Flink SQL、Flink CEP(复杂事件处理)等.
- 社区: 社区活跃,不断发展,特别是在实时流处理领域.
-
Spark:
- 生态系统: 拥有非常成熟的生态系统,包括 Spark MLlib(机器学习库)、Spark SQL、Spark GraphX(图处理库)等.
- 社区: 社区非常庞大和活跃,有大量的用户和贡献者.
三、总结
- 选择依据: 如果你的应用需要实时数据流处理且对延迟要求很高,Flink 是更好的选择。如果主要进行大规模批处理任务或需要强大的 SQL 支持,Spark 可能更适合.
- 场景适应性: Flink 适合实时监控、实时推荐系统等场景,而 Spark 适合数据仓库、数据湖、机器学习等场景.
相关文章:
Spark是什么?Flink和Spark区别
Spark是什么?Flink和Spark区别 一、Spark二、Spark和Flink区别三、总结 一、Spark Apache Spark 是一个开源的大数据处理框架,主要用于大规模数据处理和分析。它支持多种数据处理模式,包括批处理、流处理、SQL 查询、机器学习和图处理等。 核…...
Cocos Creator 3.8 修改纹理像素值
修改的代码: import { _decorator, Component, RenderTexture, Sprite, Texture2D, ImageAsset, SpriteFrame, Vec2, gfx, director, log, math, v2 } from cc;const { ccclass, property } _decorator;ccclass(GradientTransparency) export class GradientTrans…...

如何评价deepseek-V3 VS OpenAI o1 自然语言处理成Sql的能力
DeepSeek-V3 介绍 在目前大模型主流榜单中,DeepSeek-V3 在开源模型中位列榜首,与世界上最先进的闭源模型不分伯仲。 准备工作: 笔者只演示实例o1 VS DeepSeek-V3两个模型,大家可以自行验证结果或者实验更多场景,同时…...

SQL左连接的两种不同情况示例和外连接示例
Oracle;有2个表如下; 执行下图选中的左连接; 左表10条记录,右表3条记录,结果是10条记录; 执行下图的左连接, 老师表为左表,学生表为右表,结果会显示每个老师,…...
【渗透测试术语总结】
Top 渗透测试常用专业术语 相信大家和我一样,搞不清这些专业名词的区别,所以我来整理一下。 1. POC、EXP、Payload与Shellcode POC:全称 Proof of Concept ,中文 概念验证 ,常指一段漏洞证明的代码。 EXP…...

Unity2D初级背包设计后篇 拓展举例与不足分析
Unity2D初级背包设计中篇 MVC分层撰写(万字详解)-CSDN博客、 如果你已经搞懂了中篇,那么对这个背包的拓展将极为简单,我就在这里举个例子吧 目录 1.添加物品描述信息 2.拓展思路与不足分析 1.没有删除只有丢弃功能,所以可以添加垃圾桶 2.格…...
Kafka优势剖析-幂等性和事务
目录 1. 幂等性(Idempotence) 1.1 什么是幂等性? 1.2 幂等性的实现 1.2.1 生产者 ID 和序列号 1.2.2 重复消息检测 1.2.3 幂等性的优势 1.3 幂等性的配置 2. 事务支持(Transactions) 2.1 什么是事务支持&…...
MyBatis深入了解
目录 xml 映射文件中,除了常见的select、insert、update、delete 标签之外,还有哪些标签? Dao 接口的工作原理是什么?Dao 接口里的方法,参数不同时,方法能重载吗? MyBatis 是如何进行分页的?分页插件的原理是什么? 简述 …...

语音技术与人工智能:智能语音交互的多场景应用探索
引言 近年来,智能语音技术取得了飞速发展,逐渐渗透到日常生活和各行各业中。从语音助手到智能家居控制,再到企业客服和教育辅导,语音交互正以前所未有的速度改变着人机沟通的方式。这一变革背后,人工智能技术无疑是关键…...

Openwrt @ rk3568平台 固件编译实践(二)- ledeWRT版本
目录 ledeWRT介绍固件编译下载代码修改feed源更新并安装编译第三方软件包制作用于eMMC烧写的rootfs基于lede发行版验证烧写rk3568.img, LEDE wrt启动成功refhttps://blog.csdn.net/zc21463071/article/details/106751361介绍rk3568平台下, lede 大神版 openwrt固件的下载、编译…...
Windows下调试Dify相关组件(1)--前端Web
1. 什么是Dify? 官方介绍:Dify 是一款开源的大语言模型(LLM) 应用开发平台。它融合了后端即服务(Backend as Service)和 LLMOps 的理念,使开发者可以快速搭建生产级的生成式 AI 应用。 这是个组件式框架,即使是非技…...

对话|企业如何构建更完善的容器供应链安全防护体系
对话|企业如何构建更完善的容器供应链安全防护体系 云布道师 随着云计算和 DevOps 的兴起,容器技术和自动化成为软件开发中的必要手段,软件供应链也进入了自动化及 CI/CD 阶段。然而,容器技术和自动化虽然提升了软件的更新速度&…...
HTML5 缩放动画(Zoom In/Out)详解
HTML5 缩放动画(Zoom In/Out)详解 缩放动画是一种常见的视觉效果,用于使网页元素逐渐放大或缩小,从而吸引用户的注意力。下面将介绍如何使用 CSS 和 JavaScript 实现这种动画效果。 1. 使用 CSS 实现缩放动画 可以通过 CSS 的 …...

C语言——文件IO 【文件IO和标准IO区别,操作文件IO】open,write,read,dup2,access,stat
1.思维导图 2.练习 1:使用C语言编写一个简易的界面,界面如下 1:标准输出流 2:标准错误流 3:文件流 要求:按1的时候,通过printf输出数据,按2的时候,通过p…...

【C++习题】22.随机链表的复制
文章目录 题目:138. 随机链表的复制 - 力扣(LeetCode)代码: 题目:138. 随机链表的复制 - 力扣(LeetCode) 链接🔗:138. 随机链表的复制 - 力扣(LeetCode&…...

备考蓝桥杯:数据结构概念浅谈
目录 1数据结构的概念 什么是数据结构: 为什么要有数据结构 2.数据结构的三个组成要素 1.逻辑结构 2.存储结构 3.数据运算 3。算法好坏的度量(时间复杂度和空间复杂度) 时间复杂度计算 最优和平均和最差时间复杂度 计算时间复杂度例子 空间复…...

【TI毫米波雷达】DCA1000不使用mmWave Studio的数据采集方法,以及自动化实时数据采集
【TI毫米波雷达】DCA1000不使用mmWave Studio的数据采集方法,以及自动化实时数据采集 mmWave Studio提供的功能完全够用了 不用去纠结用DCA1000低延迟、无GUI传数据 速度最快又保证算力无非就是就是Linux板自己写驱动做串口和UDP 做雷达产品应用也不会采用DCA1000的…...
创建型模式3.建造者模式
创建型模式 工厂方法模式(Factory Method Pattern)抽象工厂模式(Abstract Factory Pattern)建造者模式(Builder Pattern)原型模式(Prototype Pattern)单例模式(Singleto…...

【集成学习】Boosting算法详解
文章目录 1. 集成学习概述2. Boosting算法详解3. Gradient Boosting算法详解3.1 基本思想3.2 公式推导 4. Python实现 1. 集成学习概述 集成学习(Ensemble Learning)是一种通过结合多个模型的预测结果来提高整体预测性能的技术。相比于单个模型…...

【Orca】Orca - Graphlet 和 Orbit 计数算法
Orca(ORbit Counting Algorithm)是一种用于对网络中的小图进行计数的有效算法。它计算网络中每个节点的节点和边缘轨道(4 节点和 5 节点小图)。 orca是一个用于图形网络分析的工具,主要用于计算图中的 graphlets&#…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...

docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...

.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...

高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...
Java入门学习详细版(一)
大家好,Java 学习是一个系统学习的过程,核心原则就是“理论 实践 坚持”,并且需循序渐进,不可过于着急,本篇文章推出的这份详细入门学习资料将带大家从零基础开始,逐步掌握 Java 的核心概念和编程技能。 …...
JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案
JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停 1. 安全点(Safepoint)阻塞 现象:JVM暂停但无GC日志,日志显示No GCs detected。原因:JVM等待所有线程进入安全点(如…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...