OpenCV计算机视觉 07 图像的模块匹配
在做目标检测、图像识别时,我们经常用到模板匹配,以确定模板在输入图像中的可能位置
API函数
cv2.matchTemplate(image, templ, method, result=None, mask=None)
参数含义:
image:待搜索图像
templ:模板图像
method:计算匹配程度的方法,可以有:
TM_SQDIFF 平方差匹配法:该方法采用平方差来进行匹配;匹配越好,值越小;匹配越差,值越大。
TM_CCORR 相关匹配法:该方法采用乘法操作;数值越大表明匹配程度越好。 TM_CCOEFF 相关系数匹配法:数值越大表明匹配程度越好。
TM_SQDIFF_NORMED 归一化平方差匹配法,匹配越好,值越小;匹配越差,值越大。
TM_CCORR_NORMED 归一化相关匹配法,数值越大表明匹配程度越好。
-> TM_CCOEFF_NORMED 归一化相关系数匹配法,数值越大表明匹配程度越好。
比如我要在可口可乐瓶中匹配出如下的可口可乐商标,这么做呢
可口可乐瓶:

要匹配的商标:

import cv2
# 读取名为'cola.png'的图像作为原图
kele = cv2.imread('cola.png')
# 读取名为'co_t.png'的图像作为模板
template = cv2.imread('template.png')
cv2.imshow('kele', kele) # 显示原图
cv2.imshow('c', template) # 显示模板
cv2.waitKey(0) # 等待按键
h, w = template.shape[:2] # 获取模板的高度和宽度
# 在原图中匹配模板
res = cv2.matchTemplate(kele, template, cv2.TM_CCOEFF_NORMED)
# 获取匹配结果中的最小值、最大值及对应的位置
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
top_left = max_loc # 最大匹配值的位置作为矩形的左上角
# 计算矩形的右下角
bottom_right = (top_left[0] + w, top_left[1] + h)
# 在原图上绘制矩形
kele_template = cv2.rectangle(kele, top_left, bottom_right, (0, 255, 0), 2)
cv2.imshow('k', kele_template) # 显示绘制了矩形的原图
cv2.waitKey(0) # 等待按键
输出:

相关文章:
OpenCV计算机视觉 07 图像的模块匹配
在做目标检测、图像识别时,我们经常用到模板匹配,以确定模板在输入图像中的可能位置 API函数 cv2.matchTemplate(image, templ, method, resultNone, maskNone) 参数含义: image:待搜索图像 templ:模板图像 method&…...
国产游戏崛起,燕云十六移动端1.9上线,ToDesk云电脑先开玩
游戏爱好者的利好消息出新了!网易大型武侠仙游《燕云十六声》正式官宣,移动端要在1月9日正式上线了!你期待手游版的燕云吗?不妨评论区留言说说你的看法。小编分别花了几个小时在台式机电脑和手机上都试了下,欣赏画面还…...
企业级PHP异步RabbitMQ协程版客户端 2.0 正式发布
概述 workerman/rabbitmq 是一个异步RabbitMQ客户端,使用AMQP协议。 RabbitMQ是一个基于AMQP(高级消息队列协议)实现的开源消息组件,它主要用于在分布式系统中存储和转发消息。RabbitMQ由高性能、高可用以及高扩展性出名的Erlan…...
[OPEN SQL] 限定选择行数
本次操作使用的数据库表为SCUSTOM,其字段内容如下所示 航班用户(SCUSTOM) 该数据库表中的部分值如下所示 指定查询多少行数据,我们可以使用语法UP TO n ROWS来实现对数据前n项的查询 语法格式 SELECT * FROM <dbtab> UP TO n ROWS 参数说明 db…...
Vite源码学习分享(一)
!](https://i-blog.csdnimg.cn/direct/971c35b61c57402b95be91d2b4965d85.png) 同一个项目 vite VS webpack启动速度对比...
定位,用最通俗易懂的方法2:TDOA与对应的CRLB
二郎就不设置什么VIP可见啥的了,这样大家都能看到。 如果觉得受益,可以给予一些打赏,也算对原创的一些鼓励,谢谢。 钱的用途:1)布施给他人;2)二郎会有更多空闲时间写教程 起因&…...
Linux第一课:c语言 学习记录day06
四、数组 冒泡排序 两两比较,第 j 个和 j1 个比较 int a[5] {5, 4, 3, 2, 1}; 第一轮:i 0 n:n个数,比较 n-1-i 次 4 5 3 2 1 // 第一次比较 j 0 4 3 5 2 1 // 第二次比较 j 1 4 3 2 5 1 // 第三次比较 j 2 4 3 2 1 5 // …...
ExplaineR:集成K-means聚类算法的SHAP可解释性分析 | 可视化混淆矩阵、决策曲线、模型评估与各类SHAP图
集成K-means聚类算法的SHAP可解释性分析 加载数据集并训练机器学习模型 SHAP 分析以提取特征对预测的影响 通过混淆矩阵可视化模型性能 决策曲线分析 模型评估(多指标和ROC曲线的目视检查) 带注释阈值的 ROC 曲线 加载 SHAP 结果以进行下游分析 与…...
2025年第三届“华数杯”国际大学生数学建模竞赛A题题目
问题A:他能游得更快吗? 背景介绍 在2024年巴黎奥运会上,中国游泳运动员潘展乐凭借出色的表现成为全球瞩目的焦点。年仅19岁的他在男子100米自由泳比赛中以46秒40 的成绩夺冠,并创造了自己保持的世界纪录。在男子4100米混合泳接力…...
用c实现C++类(八股)
在 C 语言中,虽然没有内建的面向对象编程(OOP)特性(如封装、继承、多态),但通过一些编程技巧,我们仍然可以模拟实现这些概念。下面将用通俗易懂的方式,逐步介绍如何在 C 中实现封装、…...
【C++多线程编程:六种锁】
目录 普通互斥锁: 轻量级锁 独占锁: std::lock_guard: std::unique_lock: 共享锁: 超时的互斥锁 递归锁 普通互斥锁: std::mutex确保任意时刻只有一个线程可以访问共享资源,在多线程中常用于保…...
【Javascript Day5】for循环及典型案例
for 循环 // 语法: for( 开始 ; 结束 ; 步长 ){ 循环体 } // for( var i 循环初始值 ; i的循环范围 ; i的增加或减少规则 ){ 循环体 } // 死循环 // for(;;){ // console.log("for循环"); // } // 循环打…...
#渗透测试#网络安全#一文了解什么是shell反弹!!!
免责声明 本教程仅为合法的教学目的而准备,严禁用于任何形式的违法犯罪活动及其他商业行为,在使用本教程前,您应确保该行为符合当地的法律法规,继续阅读即表示您需自行承担所有操作的后果,如有异议,请立即停…...
《解锁图像的语言密码:Image Caption 开源神经网络项目全解析》
《解锁图像的语言密码:Image Caption 开源项目全解析》 一、开篇:AI 看图说话时代来临二、走进 Image Caption 开源世界三、核心技术拆解:AI 如何学会看图说话(一)深度学习双雄:CNN 与 RNN(二&a…...
抢占欧洲电商高地,TikTok 运营专线成 “秘密武器”
在当今数字化浪潮席卷全球的时代,社交媒体平台已成为商业拓展的关键阵地,TikTok 更是其中的闪耀新星。近日,一则重磅消息引发行业关注:TikTok 正计划于 2025 年初进军荷兰电商市场。这一战略布局,不仅彰显了 TikTok 对…...
人工智能-数据分析及特征提取思路
1、概况 基于学生行为数据预测是否涉黄、涉黑等。 2.数据分析 数据分析的意义包括得到数据得直觉、发掘潜在的结构、提取重要的变量、删除异常值、检验潜在的假设和建立初步的模型。 2.1数据质量分析 2.1.1数据值分析 查看数据类型: 首先明确各字段的数据类型…...
2024 China Collegiate Programming Contest (CCPC) Zhengzhou Onsite 基础题题解
今天先发布基础题的题解,明天再发布铜牌题和银牌题的题解 L. Z-order Curve 思路:这题目说了,上面那一行,只有在偶数位才有可能存在1,那么一定存在这样的数,0 ,1,100, 10000,那么反之,我们的数…...
halcon3d 如何计算平面法向量!确实很简单
这个问题其实一直困扰了我很长时间,之前是怎么算的呢 对于一个平面,我会先求它的fit_primitives_object_model_3d去将它拟合,接下来用surface_normals_object_model_3d 算子生成它的法线,后用get_object_model_3d_params (ObjectModel3DNormals, ‘point_normal_x’, GenP…...
浅尝Appium自动化框架
浅尝Appium自动化框架 Appium自动化框架介绍Appium原理Appium使用安装平台驱动实战 坑 Appium自动化框架介绍 Appium 是一个开源的自动化测试框架,最初设计用于移动应用的测试,但现在它也扩展了对桌面端应用的支持。Appium 使得自动化测试变得更加简单&…...
网络安全测评技术与标准
网络安全测评概况 网络安全测评是网络信息系统和IT技术产品的安全质量保障。本节主要阐述网络安全测评的概念,给出网络安全测评的发展状况。 18.1.1 网络安全测评概念 网络安全测评是指参照一定的标准规范要求,通过一系列的技术和管理方法,获…...
idea大量爆红问题解决
问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...
基于ASP.NET+ SQL Server实现(Web)医院信息管理系统
医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...
STM32标准库-DMA直接存储器存取
文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设…...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...
Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...
Vite中定义@软链接
在webpack中可以直接通过符号表示src路径,但是vite中默认不可以。 如何实现: vite中提供了resolve.alias:通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...
pikachu靶场通关笔记19 SQL注入02-字符型注入(GET)
目录 一、SQL注入 二、字符型SQL注入 三、字符型注入与数字型注入 四、源码分析 五、渗透实战 1、渗透准备 2、SQL注入探测 (1)输入单引号 (2)万能注入语句 3、获取回显列orderby 4、获取数据库名database 5、获取表名…...
规则与人性的天平——由高考迟到事件引发的思考
当那位身着校服的考生在考场关闭1分钟后狂奔而至,他涨红的脸上写满绝望。铁门内秒针划过的弧度,成为改变人生的残酷抛物线。家长声嘶力竭的哀求与考务人员机械的"这是规定",构成当代中国教育最尖锐的隐喻。 一、刚性规则的必要性 …...
Java中HashMap底层原理深度解析:从数据结构到红黑树优化
一、HashMap概述与核心特性 HashMap作为Java集合框架中最常用的数据结构之一,是基于哈希表的Map接口非同步实现。它允许使用null键和null值(但只能有一个null键),并且不保证映射顺序的恒久不变。与Hashtable相比,Hash…...
