当前位置: 首页 > news >正文

Win10微调大语言模型ChatGLM2-6B

在《Win10本地部署大语言模型ChatGLM2-6B-CSDN博客》基础上进行,官方文档在这里,参考了这篇文章

首先确保ChatGLM2-6B下的有ptuning

 AdvertiseGen下载地址1,地址2,文件中数据留几行

模型文件下载地址 (注意:ChatGLM2-6B对话用到的的模型文件不能简单的用到这里,bin文件可以复用,但其他文件一定要重新下载,否则要报一些错)

anaconda prompt中运行,进行虚拟环境

cd /d D:\openai.wiki\ChatGLM2-6B
conda activate D:\openai.wiki\ChatGLM2-6B\ENV

运行微调除 ChatGLM2-6B 的依赖之外,还需要安装以下依赖

pip install rouge_chinese nltk jieba datasets

先了解一下train.sh(仅在Linux中使用)里面各行的意义

PRE_SEQ_LEN=128 #  soft prompt 长度
LR=2e-2     # 训练学习率
NUM_GPUS=2  # GPU卡的数量torchrun --standalone --nnodes=1 --nproc-per-node=$NUM_GPUS main.py \--do_train \   # 执行训练功能,还可以执行评估功能--train_file AdvertiseGen/train.json \   # 训练文件目录--validation_file AdvertiseGen/fval.json \   # 验证文件目录--prompt_column content \       # 训练集中prompt提示名称,对应训练文件,测试文件的"content"--response_column summary \      # 训练集中答案名称,对应训练文件,测试文件的"summary"--overwrite_cache \              # 缓存,重复训练一次的时候可删除--model_name_or_path THUDM/chatglm-6b \  # 加载模型文件目录,也可修改为本地模型的路径--output_dir output/adgen-chatglm-6b-pt-$PRE_SEQ_LEN-$LR \    # 保存训练模型文件目录--overwrite_output_dir \     # 覆盖训练文件目录--max_source_length 64 \     # 最大输入文本的长度--max_target_length 128 \--per_device_train_batch_size 1 \    # batch_size 训练批次根据显存调节--per_device_eval_batch_size 1 \     # 验证批次--gradient_accumulation_steps 16 \   # 梯度累加的步数--predict_with_generate \--max_steps 3000 \    # 最大训练模型的步数--logging_steps 10 \  # 多少步打印日志一次--save_steps 1000 \    # 多少步保存模型一次--learning_rate $LR \  # 学习率--pre_seq_len $PRE_SEQ_LEN \--quantization_bit 4   # 量化,也可修改为int8

 Windows下用以下的train.bat

因我的电脑显存只有8G,故将per_device_train_batch_size改为8

去掉--quantization_bit 4

set PRE_SEQ_LEN=128
set LR=1e-4python main.py ^--do_train ^--train_file AdvertiseGen/train.json ^--validation_file AdvertiseGen/dev.json ^--preprocessing_num_workers 10 ^--prompt_column content ^--response_column summary ^--overwrite_cache ^--model_name_or_path D:\\openai.wiki\\ChatGLM2-6B\\ptuning\\THUDM\\chatglm2-6b ^--output_dir D:/openai.wiki/ChatGLM2-6B/ptuning/output ^--overwrite_output_dir ^--max_source_length 64 ^--max_target_length 128 ^--per_device_train_batch_size 8 ^# batch_size 训练批次根据显存调节--per_device_eval_batch_size 1 ^--gradient_accumulation_steps 16 ^--predict_with_generate ^--max_steps 3000 ^--logging_steps 10 ^--save_steps 1000 ^--learning_rate %LR% ^--pre_seq_len %PRE_SEQ_LEN% 

进入ptuning文件夹

cd ptuning

运行train.bat,即可开始训练(有问题的话继续往后看)

train.bat

 可能遇到的几个问题

  • 问题一

TypeError: JsonConfig.init() got an unexpected keyword argument 'use_auth_token’

解决方式

pip uninstall datasets
pip install datasets==2.21.0
  • 问题二

name ‘round_up‘ is not defined

解决方式

将train.bat中的–quantization_bit 4删除

或者pip install cpm_kernels

  • 问题三

AttributeError: ‘ChatGLMModel‘ object has no attribute ‘prefix_encoder‘

解决方式

https://huggingface.co/THUDM/chatglm2-6b/tree/main

下载除bin文件以外的最新文件

相关文章:

Win10微调大语言模型ChatGLM2-6B

在《Win10本地部署大语言模型ChatGLM2-6B-CSDN博客》基础上进行,官方文档在这里,参考了这篇文章 首先确保ChatGLM2-6B下的有ptuning AdvertiseGen下载地址1,地址2,文件中数据留几行 模型文件下载地址 (注意&#xff1…...

什么叫区块链?怎么保证区块链的安全性?

区块链(Blockchain)是一种分布式数据库或账本技术,它通过去中心化的方式记录交易或其他数据,并确保这些记录是安全、透明和不可篡改的。区块链最初是作为比特币(Bitcoin)加密货币的基础技术而被公众所知&am…...

一、智能体强化学习——强化学习基础

1.1 强化学习与深度学习的基本概念 1.1.1 强化学习的核心思想 什么是强化学习? 强化学习(Reinforcement Learning, RL):指在与环境(Environment)的反复交互中,智能体(Agent&#x…...

【DES加密】

什么是DES DES(Data Encryption Standard) 是一种对称加密算法。它的设计目标是提供高度的数据安全性和性能。 DES的概念 DES使用56位的密钥和64位的明文块进行加密。DES算法的分组大小是64位,因此,如果需要加密的明文长度不足64位,需要进…...

.NET中的框架和运行环境

在.NET生态系统中,框架和运行环境是两个不同的概念,它们各自扮演着重要的角色。 下面我将分别介绍.NET中的框架和运行环境,并解释它们之间的区别。 .NET 框架(Frameworks) 框架提供了一套预定义的类库、工具和服务&…...

探索微软 M365 安全:全方位守护数字世界

在当今这个科技呈井喷式飞速发展,数字化浪潮以汹涌澎湃、锐不可当之势席卷全球的时代,企业与个人仿若置身于一片浩瀚无垠、信息奔涌的海洋之中,尽情畅享着技术革新所带来的无穷无尽便利。然而,恰如平静海面下潜藏着暗礁与汹涌暗流,网络安全问题恰似隐匿在暗处、随时可能给…...

深入探索AI核心模型:CNN、RNN、GAN与Transformer

在人工智能的飞速发展中,众多深度学习模型和算法不断涌现,推动了许多领域的进步。特别是在图像识别、自然语言处理、生成建模等方向,AI模型的应用越来越广泛。本文将介绍几种最常用的AI模型,包括卷积神经网络(CNN&…...

Java - Http 通讯

Java - Http 通讯 PS&#xff1a; 1. Http 协议 POST | GET 请求&#xff1b; 2. 支持 报头、报文、参数 自定义配置&#xff1b; 3. GET 返回支持 String | Stream; 4. 相关依赖&#xff1a; <dependency><groupId>org.apache.httpcomponents</groupId><…...

C++ Qt练习项目 QChar功能测试

个人学习笔记 代码仓库 GitCode - 全球开发者的开源社区,开源代码托管平台 新建项目 设计UI 1、拖入group box去掉名字 2、拖入2个LineEdit 3、拖入两个Label 4、拖入两个PushButton 5、点栅格布局 1、拖入GroupBox 2、拖入4个PushButton 3、点栅格布局 1、拖入GroupBo…...

android 官网刷机和线刷

nexus、pixel可使用google官网线上刷机的方法。网址&#xff1a;https://flash.android.com/ 本文使用google线上刷机&#xff0c;将Android14 刷为Android12 以下是失败的线刷经历。 准备工作 下载升级包。https://developers.google.com/android/images?hlzh-cn 注意&…...

二叉树层序遍历 Leetcode102.二叉树的层序遍历

二叉树的层序遍历相当于图论的广度优先搜索&#xff0c;用队列来实现 &#xff08;二叉树的递归遍历相当于图论的深度优先搜索&#xff09; 102.二叉树的层序遍历 给你二叉树的根节点 root &#xff0c;返回其节点值的 层序遍历 。 &#xff08;即逐层地&#xff0c;从左到右…...

DELTA并联机械手视觉方案荣获2024年度机器人应用典型案例奖

直击现场 2025年1月9日晚&#xff0c;2024深圳市机器人年度评选颁奖典礼在深圳市南山区圣淘沙酒店正式拉开帷幕。本次颁奖活动由中国科学院深圳先进技术研究院指导&#xff0c;深圳市机器人协会与《机器人与智能系统》杂志组织承办。 正运动公司受邀参与此次典礼&#xff0c;…...

Netty 入门学习

前言 学习Spark源码绕不开通信&#xff0c;Spark通信是基于Netty实现的&#xff0c;所以先简单学习总结一下Netty。 Spark 通信历史 最开始: Akka Spark 1.3&#xff1a; 开始引入Netty&#xff0c;为了解决大块数据&#xff08;如Shuffle&#xff09;的传输问题 Spark 1.6&…...

Magentic-One、AutoGen、LangGraph、CrewAI 或 OpenAI Swarm:哪种多 AI 代理框架最好?

目录 一、说明 二、 AutoGen-自动生成&#xff08;微软&#xff09; 2.1 特征 2.2 局限性 三、 CrewAI 3.1 特征 3.2 限制&#xff1a; 四、LangGraph 4.1 特征&#xff1a; 4.2 限制&#xff1a; 五、OpenAI Swarm 5.1 特征 5.2 限制 六、Magentic-One 6.1 特征 6.2 限制 七、…...

openstack下如何生成centos9 centos10 和Ubuntu24 镜像

如何生成一个centos 10和centos 9 的镜像1. 下载 对应的版本 wget https://cloud.centos.org/centos/10-stream/x86_64/images/CentOS-Stream-GenericCloud-x86_64-10-latest.x86_64.qcow2 wget https://cloud.centos.org/centos/9-stream/x86_64/images/CentOS-Stream-Gener…...

Kivy App开发之UX控件Slider滑块

在app中可能会调节如音量,亮度等,可以使用Slider来实现,该控件调用方便,兼容性好,滑动平稳。在一些参数设置中,也可以用来调整数值。 支持水平和垂直方向,可以设置默认值,最小及最大值。 使用方法,需用引入Slider类,通过Slider类生成一个滑块并设置相关的样式后,再…...

CSS——22.静态伪类(伪类是选择不同元素状态)

<!DOCTYPE html> <html><head><meta charset"UTF-8"><title>静态伪类</title> </head><body><a href"#">我爱学习</a></body> </html>单击链接前的样式 左键单击&#xff08;且…...

python学opencv|读取图像(三十)使用cv2.getAffineTransform()函数倾斜拉伸图像

【1】引言 前序已经学习了如何平移和旋转缩放图像&#xff0c;相关文章链接为&#xff1a; python学opencv|读取图像&#xff08;二十七&#xff09;使用cv2.warpAffine&#xff08;&#xff09;函数平移图像-CSDN博客 python学opencv|读取图像&#xff08;二十八&#xff0…...

Unity3D中基于ILRuntime的组件化开发详解

前言 在Unity3D开发中&#xff0c;组件化开发是一种高效且灵活的软件架构方式。通过将游戏功能拆分为独立的、可重用的组件&#xff0c;开发者可以更容易地管理、扩展和维护代码。而ILRuntime作为一款基于C#的热更新框架&#xff0c;为Unity3D开发者提供了一种高效的热更新和组…...

ELK的搭建

ELK elk&#xff1a;elasticsearch logstatsh kibana统一日志收集系统 elasticsearch&#xff1a;分布式的全文索引引擎点非关系型数据库,存储所有的日志信息&#xff0c;主和从&#xff0c;最少需要2台 logstatsh&#xff1a;动态的从各种指定的数据源&#xff0c;获取数据…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候&#xff0c;遇到了一些问题&#xff0c;记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

css实现圆环展示百分比,根据值动态展示所占比例

代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

2021-03-15 iview一些问题

1.iview 在使用tree组件时&#xff0c;发现没有set类的方法&#xff0c;只有get&#xff0c;那么要改变tree值&#xff0c;只能遍历treeData&#xff0c;递归修改treeData的checked&#xff0c;发现无法更改&#xff0c;原因在于check模式下&#xff0c;子元素的勾选状态跟父节…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战

“&#x1f916;手搓TuyaAI语音指令 &#x1f60d;秒变表情包大师&#xff0c;让萌系Otto机器人&#x1f525;玩出智能新花样&#xff01;开整&#xff01;” &#x1f916; Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制&#xff08;TuyaAI…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...