深度学习的加速器:Horovod,让分布式训练更简单高效!
什么是 Horovod?
Horovod 是 Uber 开发的一个专注于深度学习分布式训练的开源框架,旨在简化和加速多 GPU、多节点环境下的训练过程。它以轻量级、易用、高性能著称,特别适合需要快速部署分布式训练的场景。Horovod 的名字来源于俄罗斯传统舞蹈“Хоровод”,寓意多个计算单元协调合作。
为什么需要 Horovod?
深度学习模型训练通常需要大量的数据和计算资源,而单台机器或单块 GPU 的计算能力有限。当你需要:
- 训练更大的模型(如 GPT-4、ResNet 等)。
- 使用更多的数据,提高模型的泛化能力。
- 缩短训练时间,快速完成实验。
此时,分布式训练就成为必然选择。Horovod 正是为了解决分布式训练的复杂性和效率问题应运而生。
Horovod 的核心理念
Horovod 的核心理念是 “使分布式深度学习像多 GPU 训练一样简单”。它通过以下关键机制实现这一目标:
1. Ring-AllReduce 算法
Horovod 使用一种高效的通信算法,称为 Ring-AllReduce。这个算法将梯度更新分发到多个节点,每个节点只需与相邻节点通信,显著减少通信开销。
2. 框架无关性
Horovod 支持多种深度学习框架,包括 TensorFlow、PyTorch 和 MXNet 等,无需对代码进行大规模重构。
3. 线性扩展
Horovod 能随着 GPU 数量的增加实现接近线性的性能提升,使得资源利用率更高。
Horovod 的优势
- 高性能:Ring-AllReduce 算法和 NCCL 的结合优化了 GPU 间通信效率。
- 简单易用:只需几行代码改动,即可将单机训练转换为分布式训练。
- 良好的扩展性:支持多 GPU、多节点环境,能轻松扩展到大规模集群。
- 兼容性强:可以无缝集成到现有的深度学习代码中,支持 TensorFlow、PyTorch 等主流框架。
Horovod 的工作原理
分布式训练的核心是数据并行,即将训练数据分成若干份,分配到不同的设备上处理。Horovod 在训练过程中会:
- 分发模型参数:所有节点初始化时都加载相同的模型权重。
- 局部计算梯度:每个 GPU 基于自己的数据计算梯度。
- 同步梯度:使用 Ring-AllReduce 汇总所有 GPU 的梯度。
- 更新权重:所有节点根据同步后的梯度更新模型。
这种方式确保了训练结果的一致性,同时最大化地利用了计算资源。
Horovod 的基本使用方法
安装 Horovod
# 安装 Horovod
pip install horovod# 如果使用 GPU,需要安装 OpenMPI 和 NCCL
sudo apt-get install -y openmpi-bin libopenmpi-dev
确保你的环境中安装了合适版本的深度学习框架(如 TensorFlow、PyTorch)。
示例:在 TensorFlow 中使用 Horovod
import tensorflow as tf
import horovod.tensorflow as hvd# 初始化 Horovod
hvd.init()# 设置 GPU(每个进程使用不同的 GPU)
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:tf.config.experimental.set_visible_devices(gpus[hvd.local_rank()], 'GPU')# 构建模型
model = tf.keras.Sequential([tf.keras.layers.Dense(128, activation='relu'),tf.keras.layers.Dense(10, activation='softmax')
])# 调整学习率
optimizer = tf.keras.optimizers.Adam(0.001 * hvd.size())# 使用 Horovod 封装优化器
optimizer = hvd.DistributedOptimizer(optimizer)# 编译模型
model.compile(optimizer=optimizer,loss='sparse_categorical_crossentropy',metrics=['accuracy'])# 训练模型
model.fit(dataset, epochs=10, callbacks=[hvd.callbacks.BroadcastGlobalVariablesCallback(0)])
示例:在 PyTorch 中使用 Horovod
import torch
import horovod.torch as hvd# 初始化 Horovod
hvd.init()# 设置 GPU
torch.cuda.set_device(hvd.local_rank())# 构建模型
model = torch.nn.Linear(10, 10).cuda()# 设置优化器
optimizer = torch.optim.SGD(model.parameters(), lr=0.01 * hvd.size())# 使用 Horovod 封装优化器
optimizer = hvd.DistributedOptimizer(optimizer, named_parameters=model.named_parameters())# 广播初始模型权重
hvd.broadcast_parameters(model.state_dict(), root_rank=0)# 训练循环
for data, target in dataloader:data, target = data.cuda(), target.cuda()optimizer.zero_grad()loss = torch.nn.functional.cross_entropy(model(data), target)loss.backward()optimizer.step()
使用 Horovod 的最佳实践
- 调整学习率:将学习率设置为
原始学习率 * hvd.size(),以补偿并行计算的缩放。 - 混合精度训练:使用 AMP(Automatic Mixed Precision),可以提高计算效率并降低显存占用。
- 使用 NCCL:确保安装 NVIDIA 的 NCCL 库,优化 GPU 通信性能。
- 检查资源分配:通过
hvd.local_rank()确保每个进程分配到不同的 GPU。
Horovod 的应用场景
- 企业级 AI 训练:例如推荐系统、自然语言处理等需要大规模数据的训练任务。
- 科学研究:如图像处理、生物信息学等需要高性能计算的领域。
- 模型微调:快速扩展训练环境,加速实验迭代。
小结
Horovod 是深度学习分布式训练的强力工具,通过简单的代码改动即可实现高效的多 GPU 或多节点训练。它对开发者友好、性能出色,是提升训练效率、缩短开发周期的不二之选。
无论是初学者还是专家,Horovod 都能帮助你迈向深度学习的高效之路!
相关文章:
深度学习的加速器:Horovod,让分布式训练更简单高效!
什么是 Horovod? Horovod 是 Uber 开发的一个专注于深度学习分布式训练的开源框架,旨在简化和加速多 GPU、多节点环境下的训练过程。它以轻量级、易用、高性能著称,特别适合需要快速部署分布式训练的场景。Horovod 的名字来源于俄罗斯传统舞…...
计算机的错误计算(二百零八)
摘要 用两个大模型计算 arccot(0.9911588354432518e10) . 保留16位有效数字。两个的输出均是错误的。代码的输出格式亦均出错。 本节题目为一读者来信提议(不知该题目有何玄机?)。 例1. 计算 arccot(0.9911588354432518e10) . 保留16位有…...
海康机器人IPO,又近了一步
导语 大家好,我是社长,老K。专注分享智能制造和智能仓储物流等内容。欢迎大家到本文底部评论区留言。 海康机器人的IPO之路,一路跌宕起伏,让无数投资者和业内人士关注。这不仅仅是一家企业的上市之旅,更是中国智能制造…...
【环境搭建】Metersphere v2.x 容器部署教程踩坑总结
前言 Metersphere部署过程中遇到的问题有点多,原因是其容器的架构蛮复杂的,比较容易踩坑,所以记录一下。 介绍 MeterSphere 是开源持续测试平台,遵循 GPL v3 开源许可协议,涵盖测试管理、接口测试、UI 测试和性能测…...
系统看门狗配置--以ubuntu为例
linux系统配置看门狗 以 ubuntu 系统配置看门狗为例 配置看门狗使用的脚本文件,需要使用管理员权限来执行: 配置是:系统每 30S 喂一次狗,超过 60S 不进行投喂,就会自动重启。 1. 系统脚本内容: #!/bin/b…...
阅读笔记——《A survey of protocol fuzzing》
【参考文献】Zhang X, Zhang C, Li X, et al. A survey of protocol fuzzing[J]. ACM Computing Surveys, 2024, 57(2): 1-36.【注】本文仅为作者个人学习笔记,如有冒犯,请联系作者删除。 目录 1、Introduction 2、Background 2.1、Communication Pro…...
C# 语法中级
总目录 C# 语法总目录 C# 语法中级 lambda 表达式1. 捕获外部变量2. 捕获迭代变量 匿名类型匿名方法异常相关1. 枚举器2. 可枚举对象3. 迭代器3. 迭代器语义4. yield break 语句5. 组合序列 可空类型1. Nullable< T > 结构体 lambda 表达式 编译器在内部将lambda表达式编…...
STORM:从多时间点2D图像中快速重建动态3D场景的技术突破
随着计算机视觉和机器学习技术的迅猛发展,我们已经能够利用AI来解决许多复杂的问题。然而,在处理大规模室外动态3D场景重建时,现有的方法往往面临着诸多挑战,如需要大量人工标注数据、处理速度慢以及难以准确捕捉移动物体等。为了解决这些问题,研究者们开发了STORM(Spati…...
excel前缀和(递增求和)
方法一:https://www.zhihu.com/zvideo/1382164996659515392?utm_id0 假设输入数据在B2:B10,选中单元格C2,输入SUM(B2:B2,然后选中其中的B2,按F4(或者直接输入SUM(B$2:B2),回车确认&…...
【AI日记】25.01.11 Weights Biases | AI 笔记 notion
【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】【AI日记】【读书与思考】 AI kaggle 比赛:Forecasting Sticker Sales笔记:我的 AI 笔记主要记在两个地方 有道云笔记:数学公式和符号比较多的笔记notion:没什么数学公式的…...
P8772 [蓝桥杯 2022 省 A] 求和
题目描述 给定 𝑛 个整数 𝑎1,𝑎2,⋯ ,𝑎𝑛 求它们两两相乘再相加的和,即 𝑆𝑎1⋅𝑎2𝑎1⋅𝑎3⋯𝑎1⋅𝑎𝑛&…...
【Oracle篇】深入了解执行计划中的访问路径(含表级别、B树索引、位图索引、簇表四大类访问路径)
💫《博主介绍》:✨又是一天没白过,我是奈斯,从事IT领域✨ 💫《擅长领域》:✌️擅长阿里云AnalyticDB for MySQL(分布式数据仓库)、Oracle、MySQL、Linux、prometheus监控;并对SQLserver、NoSQL(…...
WSDL的基本概念
《WSDL 语法》这篇文章将详细介绍WSDL(Web Services Description Language)的语法。WSDL是一种基于XML的语言,用于描述Web服务及其访问方式。它允许开发者将Web服务定义为服务访问点或端口的集合,这些服务访问点可以通过特定的协议…...
RabbitMQ解决消息积压的方法
目录 减少发送mq的消息体内容 增加消费者数量 批量消费消息 临时队列转移 监控和预警机制 分阶段实施 最后还有一个方法就是开启队列的懒加载 这篇文章总结一下自己知道的解决消息积压得方法。 减少发送mq的消息体内容 像我们没有必要知道一个的中间状态,只需…...
Android 网络层相关介绍
关注 Android 默认支持的网络管理行为,默认支持的网络服务功能。 功能术语 术语缩写全称释义DHCPv6Dynamic Host Configuration Protocol for IPv6动态主机配置协议的第六版,用于在IPv6网络中动态分配IP地址和其他网络配置参数。DNS Domain Name System域名系统。LLALink-Loc…...
2025年第三届“华数杯”国际赛B题解题思路与代码(Matlab版)
问题1:产业关联性分析 在 question1.m 文件中,我们分析了中国主要产业之间的相互关系。以下是代码的详细解读: % 问题1:分析中国主要产业之间的相互关系function question1()% 清空工作区和命令窗口clear;clc;% 设置中文显示set…...
小米路由器IPv6 功能使用指南
本文不限于多层路由使用IPv6 的情况,提供解决IPv6 无法获取的更硬核的方法,需要有ssh 工具。(无安卓设备,测试环境win、mac、ios) 首先明确一点,就是如果想让你的设备得到GUA 地址,即访问 6.i…...
k8s dashboard离线部署步骤
确定k8s版本,以1.23为例。 部署metrics-server服务,最好用v0.5.2。 用v0.6.0,可能会报以下错误: nodekubemaster:~/Desktop/metric$ kubectl top nodes Error from server (ServiceUnavailable): the server is currently unabl…...
Wireshark抓包教程(2024最新版个人笔记)
改内容是个人的学习笔记 Wireshark抓包教程(2024最新版)_哔哩哔哩_bilibili 该课程笔记1-16 wireshark基础 什么是抓包工具:用来抓取数据包的一个软件 wireshark的功能:用来网络故障排查;用来学习网络技术 wireshark下…...
稀疏矩阵:BM25;稠密矩阵:RoBERTa - wwm - ext顺序
稀疏矩阵:BM25;稠密矩阵:RoBERTa - wwm - ext顺序 先后顺序 先BM25后RoBERTa - wwm - ext: 流程说明:首先可以使用BM25进行初步的检索。由于BM25是基于词频等统计信息的检索模型,它能够快速地从大规模文档集合中筛选出可能包含相关信息的文档子集。例如,在一个包含大量新…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...
什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...
SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)
上一章用到了V2 的概念,其实 Fiori当中还有 V4,咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务),代理中间件(ui5-middleware-simpleproxy)-CSDN博客…...
保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
【分享】推荐一些办公小工具
1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由:大部分的转换软件需要收费,要么功能不齐全,而开会员又用不了几次浪费钱,借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...
人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...
FFmpeg:Windows系统小白安装及其使用
一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】,注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录(即exe所在文件夹)加入系统变量…...
