CUDNN详解
文章目录
- CUDNN详解
- 一、引言
- 二、cuDNN的基本使用
- 1、初始化cuDNN句柄
- 2、创建和设置描述符
- 三、执行卷积操作
- 1、设置卷积参数
- 2、选择卷积算法
- 3、执行卷积
- 四、使用示例
- 五、总结
CUDNN详解

一、引言
cuDNN(CUDA Deep Neural Network library)是NVIDIA为深度神经网络开发的GPU加速库。它提供了高效实现深度学习算法所需的基本构建块,如卷积、池化、激活函数等。cuDNN通过优化这些操作,显著提高了深度学习模型的训练和推理速度,是深度学习框架(如TensorFlow、PyTorch)在GPU上高效运行的关键组件。
二、cuDNN的基本使用
1、初始化cuDNN句柄
在使用cuDNN之前,需要创建一个cuDNN句柄,该句柄用于管理cuDNN的上下文。例如:
cudnnHandle_t cudnn;
checkCUDNN(cudnnCreate(&cudnn));
这里使用了checkCUDNN宏来检查cuDNN函数调用的返回值,确保操作成功。
2、创建和设置描述符
cuDNN使用描述符(Descriptor)来描述张量(Tensor)、卷积核(Filter)和卷积操作(Convolution)等。例如,创建一个输入张量描述符并设置其属性:
cudnnTensorDescriptor_t input_descriptor;
checkCUDNN(cudnnCreateTensorDescriptor(&input_descriptor));
checkCUDNN(cudnnSetTensor4dDescriptor(input_descriptor,CUDNN_TENSOR_NCHW,CUDNN_DATA_FLOAT,batch_size, channels, height, width));
这里设置了输入张量的格式(NCHW)、数据类型(float)和维度(批量大小、通道数、高度、宽度)。
三、执行卷积操作
1、设置卷积参数
在执行卷积操作之前,需要设置卷积核描述符和卷积描述符。例如:
cudnnFilterDescriptor_t kernel_descriptor;
checkCUDNN(cudnnCreateFilterDescriptor(&kernel_descriptor));
checkCUDNN(cudnnSetFilter4dDescriptor(kernel_descriptor,CUDNN_DATA_FLOAT,CUDNN_TENSOR_NCHW,output_channels, input_channels, kernel_height, kernel_width));cudnnConvolutionDescriptor_t convolution_descriptor;
checkCUDNN(cudnnCreateConvolutionDescriptor(&convolution_descriptor));
checkCUDNN(cudnnSetConvolution2dDescriptor(convolution_descriptor,padding_height, padding_width,vertical_stride, horizontal_stride,dilation_height, dilation_width,CUDNN_CROSS_CORRELATION,CUDNN_DATA_FLOAT));
这里设置了卷积核的大小、输入和输出通道数、步长、填充等参数。
2、选择卷积算法
cuDNN提供了多种卷积算法,可以选择最适合当前硬件和数据的算法。例如:
int algo_count;
checkCUDNN(cudnnGetConvolutionForwardAlgorithmMaxCount(cudnn, &algo_count));
cudnnConvolutionFwdAlgo_t algo;
checkCUDNN(cudnnGetConvolutionForwardAlgorithm(cudnn,input_descriptor,kernel_descriptor,convolution_descriptor,output_descriptor,CUDNN_CONVOLUTION_FWD_PREFER_FASTEST,0,&algo));
这里选择了最快的卷积算法。
3、执行卷积
最后,使用选择的算法执行卷积操作:
float alpha = 1.0f, beta = 0.0f;
checkCUDNN(cudnnConvolutionForward(cudnn,&alpha,input_descriptor, input_data,kernel_descriptor, kernel_data,convolution_descriptor,algo,workspace, workspace_size,&beta,output_descriptor, output_data));
这里alpha和beta是缩放因子,input_data、kernel_data和output_data分别是输入、卷积核和输出数据的指针。
四、使用示例
以下是一个完整的cuDNN卷积操作示例,包括初始化、设置描述符、执行卷积和清理资源:
#include <iostream>
#include <cuda_runtime.h>
#include <cudnn.h>#define CHECK_CUDNN(call) \
{ \cudnnStatus_t status = call; \if (status != CUDNN_STATUS_SUCCESS) { \std::cerr << "cuDNN error: " << cudnnGetErrorString(status) << std::endl; \exit(1); \} \
}int main() {int batch_size = 1, channels = 1, height = 28, width = 28;int output_channels = 16, kernel_height = 3, kernel_width = 3;// 创建cuDNN句柄cudnnHandle_t cudnn;CHECK_CUDNN(cudnnCreate(&cudnn));// 创建输入张量描述符cudnnTensorDescriptor_t input_descriptor;CHECK_CUDNN(cudnnCreateTensorDescriptor(&input_descriptor));CHECK_CUDNN(cudnnSetTensor4dDescriptor(input_descriptor,CUDNN_TENSOR_NCHW,CUDNN_DATA_FLOAT,batch_size, channels, height, width));// 创建输出张量描述符cudnnTensorDescriptor_t output_descriptor;CHECK_CUDNN(cudnnCreateTensorDescriptor(&output_descriptor));CHECK_CUDNN(cudnnSetTensor4dDescriptor(output_descriptor,CUDNN_TENSOR_NCHW,CUDNN_DATA_FLOAT,batch_size, output_channels, height, width));// 创建卷积核描述符cudnnFilterDescriptor_t kernel_descriptor;CHECK_CUDNN(cudnnCreateFilterDescriptor(&kernel_descriptor));CHECK_CUDNN(cudnnSetFilter4dDescriptor(kernel_descriptor,CUDNN_DATA_FLOAT,CUDNN_TENSOR_NCHW,output_channels, channels, kernel_height, kernel_width));// 创建卷积描述符cudnnConvolutionDescriptor_t convolution_descriptor;CHECK_CUDNN(cudnnCreateConvolutionDescriptor(&convolution_descriptor));CHECK_CUDNN(cudnnSetConvolution2dDescriptor(convolution_descriptor,1, 1, 1, 1, 1, 1,CUDNN_CROSS_CORRELATION,CUDNN_DATA_FLOAT));// 选择卷积算法cudnnConvolutionFwdAlgo_t algo;CHECK_CUDNN(cudnnGetConvolutionForwardAlgorithm(cudnn,input_descriptor,kernel_descriptor,convolution_descriptor,output_descriptor,CUDNN_CONVOLUTION_FWD_PREFER_FASTEST,0,&algo));// 分配内存float *input_data, *kernel_data, *output_data, *workspace;size_t workspace_size;cudaMalloc(&input_data, batch_size * channels * height * width * sizeof(float));cudaMalloc(&kernel_data, output_channels * channels * kernel_height * kernel_width * sizeof(float));cudaMalloc(&output_data, batch_size * output_channels * height * width * sizeof(float));CHECK_CUDNN(cudnnGetConvolutionForwardWorkspaceSize(cudnn,input_descriptor,kernel_descriptor,convolution_descriptor,output_descriptor,algo,&workspace_size));cudaMalloc(&workspace, workspace_size);// 执行卷积float alpha = 1.0f, beta = 0.0f;CHECK_CUDNN(cudnnConvolutionForward(cudnn,&alpha,input_descriptor, input_data,kernel_descriptor, kernel_data,convolution_descriptor,algo,workspace, workspace_size,&beta,output_descriptor, output_data));// 清理资源cudaFree(input_data);cudaFree(kernel_data);cudaFree(output_data);cudaFree(workspace);cudnnDestroyTensorDescriptor(input_descriptor);cudnnDestroyTensorDescriptor(output_descriptor);cudnnDestroyFilterDescriptor(kernel_descriptor);cudnnDestroyConvolutionDescriptor(convolution_descriptor);cudnnDestroy(cudnn);return 0;
}
这个示例展示了如何使用cuDNN进行二维卷积操作,包括初始化、设置描述符、选择算法、执行卷积和清理资源。
五、总结
cuDNN是深度学习中不可或缺的加速库,通过优化卷积、池化、激活等操作,显著提高了模型的训练和推理速度。掌握cuDNN的基本使用方法,可以帮助开发者更高效地实现深度学习模型。在实际应用中,cuDNN与CUDA、深度学习框架(如TensorFlow、PyTorch)紧密配合,提供了强大的计算支持。
版权声明:本博客内容为原创,转载请保留原文链接及作者信息。
参考文章:
- [cuDNN API的使用与测试-以二维卷积+Relu激活函数为例](https://www.hbblog.cn/cuda%E7%9B%B8%E5%85%B3/2022%E5%B9%B407%E6%9C%8823%E6%97%A5%2023%E
相关文章:
CUDNN详解
文章目录 CUDNN详解一、引言二、cuDNN的基本使用1、初始化cuDNN句柄2、创建和设置描述符 三、执行卷积操作1、设置卷积参数2、选择卷积算法3、执行卷积 四、使用示例五、总结 CUDNN详解 一、引言 cuDNN(CUDA Deep Neural Network library)是NVIDIA为深度…...
下载并安装MySQL
在Linux系统上下载并安装数据库(以MySQL为例)的步骤如下: 一、下载MySQL 访问MySQL官网 打开浏览器,访问MySQL的官方网站:https://www.mysql.com/。 进入下载页面 在MySQL官网首页,找到并点击“Downloads…...
Linux ffmpeg 基础用法
简介 FFmpeg 是一个强大的开源多媒体框架,用于处理视频、音频和其他多媒体文件和流。它允许转换、录制、编辑、流媒体等等。 安装 Debian/Ubuntu sudo apt update sudo apt install ffmpegRed Hat/CentOS sudo dnf install ffmpegmacOS (via Homebrew) brew i…...
【C++入门】详解(中)
目录 💕1.函数的重载 💕2.引用的定义 💕3.引用的一些常见问题 💕4.引用——权限的放大/缩小/平移 💕5. 不存在的空引用 💕6.引用作为函数参数的速度之快(代码体现) Ǵ…...
深度学习的加速器:Horovod,让分布式训练更简单高效!
什么是 Horovod? Horovod 是 Uber 开发的一个专注于深度学习分布式训练的开源框架,旨在简化和加速多 GPU、多节点环境下的训练过程。它以轻量级、易用、高性能著称,特别适合需要快速部署分布式训练的场景。Horovod 的名字来源于俄罗斯传统舞…...
计算机的错误计算(二百零八)
摘要 用两个大模型计算 arccot(0.9911588354432518e10) . 保留16位有效数字。两个的输出均是错误的。代码的输出格式亦均出错。 本节题目为一读者来信提议(不知该题目有何玄机?)。 例1. 计算 arccot(0.9911588354432518e10) . 保留16位有…...
海康机器人IPO,又近了一步
导语 大家好,我是社长,老K。专注分享智能制造和智能仓储物流等内容。欢迎大家到本文底部评论区留言。 海康机器人的IPO之路,一路跌宕起伏,让无数投资者和业内人士关注。这不仅仅是一家企业的上市之旅,更是中国智能制造…...
【环境搭建】Metersphere v2.x 容器部署教程踩坑总结
前言 Metersphere部署过程中遇到的问题有点多,原因是其容器的架构蛮复杂的,比较容易踩坑,所以记录一下。 介绍 MeterSphere 是开源持续测试平台,遵循 GPL v3 开源许可协议,涵盖测试管理、接口测试、UI 测试和性能测…...
系统看门狗配置--以ubuntu为例
linux系统配置看门狗 以 ubuntu 系统配置看门狗为例 配置看门狗使用的脚本文件,需要使用管理员权限来执行: 配置是:系统每 30S 喂一次狗,超过 60S 不进行投喂,就会自动重启。 1. 系统脚本内容: #!/bin/b…...
阅读笔记——《A survey of protocol fuzzing》
【参考文献】Zhang X, Zhang C, Li X, et al. A survey of protocol fuzzing[J]. ACM Computing Surveys, 2024, 57(2): 1-36.【注】本文仅为作者个人学习笔记,如有冒犯,请联系作者删除。 目录 1、Introduction 2、Background 2.1、Communication Pro…...
C# 语法中级
总目录 C# 语法总目录 C# 语法中级 lambda 表达式1. 捕获外部变量2. 捕获迭代变量 匿名类型匿名方法异常相关1. 枚举器2. 可枚举对象3. 迭代器3. 迭代器语义4. yield break 语句5. 组合序列 可空类型1. Nullable< T > 结构体 lambda 表达式 编译器在内部将lambda表达式编…...
STORM:从多时间点2D图像中快速重建动态3D场景的技术突破
随着计算机视觉和机器学习技术的迅猛发展,我们已经能够利用AI来解决许多复杂的问题。然而,在处理大规模室外动态3D场景重建时,现有的方法往往面临着诸多挑战,如需要大量人工标注数据、处理速度慢以及难以准确捕捉移动物体等。为了解决这些问题,研究者们开发了STORM(Spati…...
excel前缀和(递增求和)
方法一:https://www.zhihu.com/zvideo/1382164996659515392?utm_id0 假设输入数据在B2:B10,选中单元格C2,输入SUM(B2:B2,然后选中其中的B2,按F4(或者直接输入SUM(B$2:B2),回车确认&…...
【AI日记】25.01.11 Weights Biases | AI 笔记 notion
【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】【AI日记】【读书与思考】 AI kaggle 比赛:Forecasting Sticker Sales笔记:我的 AI 笔记主要记在两个地方 有道云笔记:数学公式和符号比较多的笔记notion:没什么数学公式的…...
P8772 [蓝桥杯 2022 省 A] 求和
题目描述 给定 𝑛 个整数 𝑎1,𝑎2,⋯ ,𝑎𝑛 求它们两两相乘再相加的和,即 𝑆𝑎1⋅𝑎2𝑎1⋅𝑎3⋯𝑎1⋅𝑎𝑛&…...
【Oracle篇】深入了解执行计划中的访问路径(含表级别、B树索引、位图索引、簇表四大类访问路径)
💫《博主介绍》:✨又是一天没白过,我是奈斯,从事IT领域✨ 💫《擅长领域》:✌️擅长阿里云AnalyticDB for MySQL(分布式数据仓库)、Oracle、MySQL、Linux、prometheus监控;并对SQLserver、NoSQL(…...
WSDL的基本概念
《WSDL 语法》这篇文章将详细介绍WSDL(Web Services Description Language)的语法。WSDL是一种基于XML的语言,用于描述Web服务及其访问方式。它允许开发者将Web服务定义为服务访问点或端口的集合,这些服务访问点可以通过特定的协议…...
RabbitMQ解决消息积压的方法
目录 减少发送mq的消息体内容 增加消费者数量 批量消费消息 临时队列转移 监控和预警机制 分阶段实施 最后还有一个方法就是开启队列的懒加载 这篇文章总结一下自己知道的解决消息积压得方法。 减少发送mq的消息体内容 像我们没有必要知道一个的中间状态,只需…...
Android 网络层相关介绍
关注 Android 默认支持的网络管理行为,默认支持的网络服务功能。 功能术语 术语缩写全称释义DHCPv6Dynamic Host Configuration Protocol for IPv6动态主机配置协议的第六版,用于在IPv6网络中动态分配IP地址和其他网络配置参数。DNS Domain Name System域名系统。LLALink-Loc…...
2025年第三届“华数杯”国际赛B题解题思路与代码(Matlab版)
问题1:产业关联性分析 在 question1.m 文件中,我们分析了中国主要产业之间的相互关系。以下是代码的详细解读: % 问题1:分析中国主要产业之间的相互关系function question1()% 清空工作区和命令窗口clear;clc;% 设置中文显示set…...
KubeSphere 容器平台高可用:环境搭建与可视化操作指南
Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...
【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...
MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例
一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...
mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包
文章目录 现象:mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时,可能是因为以下几个原因:1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...
MySQL账号权限管理指南:安全创建账户与精细授权技巧
在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则…...
