当前位置: 首页 > news >正文

ChatGPT API快速搭建自己的第一个应用—文章摘要(单轮对话应用)

使用ChatGPT API快速搭建自己的第一个应用

  • 1 安装库
  • 2 设置与导入
  • 3 文章摘要(单轮对话应用)
    • 3.1 任务简介:
    • 3.2 初始化
    • 3.3 点击发送
    • 3.4 保存
    • 3.5 检查并打印你的结果

1 安装库

!pip install gradio

gradio 是一个用于快速搭建交互式用户界面的 Python 库,特别适合展示机器学习模型、深度学习模型或其他 Python 函数的功能。它允许开发者用极少的代码创建一个简单易用的 Web 应用程序,方便用户与模型或函数交互。

2 设置与导入

import os
import json
from typing import List, Dict, Tupleimport openai
import gradio as gr
openai.api_key = "你的 OPENAI API 密钥"
openai.api_base = "API 端点"# 调用 ChatGPT API
try:response = openai.ChatCompletion.create(model="gpt-3.5-turbo",  # 或 "gpt-4"messages=[{"role": "user", "content": "测试"}],  # 设置一个简单的测试消息max_tokens=1,)print("API 设置成功!!")  # 输出成功信息
except Exception as e:print(f"API 可能有问题,请检查:{e}")  # 输出详细的错误信息

API 设置成功!!

3 文章摘要(单轮对话应用)

3.1 任务简介:

在此任务中,你需要将你的聊天机器人变为一个摘要器。它的工作是当用户输入一篇文章时,能够为用户总结该文章的内容。

你需要完成以下步骤:

  1. 设计一个用于生成摘要的提示词,并填写在 prompt_for_summarization中。
  2. 点击运行按钮, 这将弹出一个可交互的界面。
  3. 你可以找到一篇文章或使用当前的示例文章:《从百草园到三味书屋》,并将其填写在标记为“文章”的输入框中。
  4. 点击“发送”按钮生成文章的摘要。(你可以使用“温度”滑块来控制输出的创造性,温度越高,输出越具创造性)。
  5. 如果你想更改提示词,可以停止单元格,返回到TODO部分进行更改,然后再次运行。
  6. 在你获得满意的结果后,点击“导出”按钮保存结果。文件列表中将出现一个名为 part1.json 的文件。

注意:

  • 如果你再次点击“导出”按钮,之前的结果将被覆盖。
  • 即使使用相同的提示词,输出的结果可能仍然不同。

3.2 初始化

# TODO: 在此处输入用于摘要的提示词
prompt_for_summarization = "请将以下文章概括成几句话。"# 重置对话的函数
def reset() -> List:return [

相关文章:

ChatGPT API快速搭建自己的第一个应用—文章摘要(单轮对话应用)

使用ChatGPT API快速搭建自己的第一个应用 1 安装库2 设置与导入3 文章摘要(单轮对话应用)3.1 任务简介:3.2 初始化3.3 点击发送3.4 保存3.5 检查并打印你的结果1 安装库 !pip install gradiogradio 是一个用于快速搭建交互式用户界面的 Python 库,特别适合展示机器学习模…...

【01】AE特效开发制作特技-Adobe After Effects-AE特效制作快速入门-制作飞机,子弹,爆炸特效以及导出png序列图-优雅草央千澈

【01】AE特效开发制作特技-Adobe After Effects-AE特效制作快速入门-制作飞机,子弹,爆炸特效以及导出png序列图-优雅草央千澈 开发背景 优雅草央千澈所有的合集,系列文章可能是不太适合完全初学者的,因为课程不会非常细致的系统…...

软件测试预备知识④—NTFS权限管理、磁盘配额与文件共享

在软件测试的实际环境搭建与管理过程中,了解和掌握NTFS权限管理、磁盘配额以及文件共享等知识至关重要。这些功能不仅影响系统的安全性和稳定性,还对测试数据的存储、访问以及多用户协作测试有着深远的影响。 一、NTFS权限管理 1.1 NTFS简介 NTFS&am…...

CI/CD 流水线

CI/CD 流水线 CI 与 CD 的边界CI 持续集成CD(持续交付/持续部署)自动化流程示例: Jenkins 引入到 CI/CD 流程在本地或服务器上安装 Jenkins。配置 Jenkins 环境流程设计CI 阶段:Jenkins 流水线实现CD 阶段:Jenkins 流水…...

【python3】 sqlite格式的db文件获得所有表和数据

【python3】 sqlite格式的db文件获得所有表和数据 1.背景2.代码3.解析1.背景 SQLite 格式的 .db 文件就是一个包含 SQLite 数据库的文件。 SQLite 格式的 .db 文件通常存储的是一个关系型数据库。 SQLite广泛用于应用程序、移动设备、浏览器等场景。它将整个数据库存储在一个文…...

【灵码助力安全3】——利用通义灵码辅助智能合约漏洞检测的尝试

前言 随着区块链技术的快速发展,智能合约作为去中心化应用(DApps)的核心组件,其重要性日益凸显。然而,智能合约的安全问题一直是制约区块链技术广泛应用的关键因素之一。由于智能合约代码一旦部署就难以更改&#xf…...

openEuler 22.04使用yum源最快速度部署k8s 1.20集群

本文目的 openEuler的官方源里有kubernetes 1.20,使用yum源安装是最快部署一个k8s集群的办法 硬件环境 主机名系统架构ipmasteropenEuler release 22.03 (LTS-SP2)arm192.168.3.11edgeopenEuler release 22.03 (LTS-SP2)arm192.168.3.12deviceopenEuler release 22.…...

Docker Compose 教程

Docker Compose 是一个 Docker 容器的依赖管理工具。 例如我们一个服务需要依赖到多个 Docker 容器,那么使用 Docker Compose 这个工具就能很方便的帮助我们管理。 Docker Compose 通过配置文件 .yml。 定义了所有容器的依赖关系。 然后我们只需把我们想要的 Docke…...

opencv的NLM去噪算法

NLM(Non-Local Means)去噪算法是一种基于图像块(patch)相似性的去噪方法。其基本原理是: 图像块相似性:算法首先定义了一个搜索窗口(search window),然后在该窗口内寻找…...

scala基础学习_方法函数

文章目录 方法与函数函数(又称函数值/匿名函数)定义方法注意 单参数函数多参数函数函数作为参数传递 方法将方法转换为函数方法的返回值总结 方法与函数 函数(又称函数值/匿名函数) 定义在任何地方:函数可以定义在类…...

Android车机DIY开发之软件篇(八)单独编译

Android车机DIY开发之软件篇(八)单独编译 1.CarLauncher单独编译 CarLauncher源码位于 packages/apps/Car/Launcher 用Eclipse ADT 谷歌定制版编译而成,.mk .bp编译 Android13目录如下: alientekalientek:~/packages/apps/Car$ ls Calendar …...

【Bug】报错信息:Required request body is missing(包含五种详细解决方案)

大家好,我是摇光~ 遇到“Required request body is missing”错误通常意味着服务器期望在HTTP请求中包含一个请求体(body),但是实际上并没有收到。 例如: 当你在使用网页或应用程序的后台(比如一个网站或手…...

Docker 专栏 —— Dockerfile 指令详解

文章目录 ADD 复制文件COPY 复制文件ARG 设置构建参数CMD 容器启动命令ENTRYPOINT ⼊⼝点ENV 设置环境变量EXPOSE 声明暴露的端⼝FROM 指定基础镜像LABEL 为镜像添加元数据MAINTAINER 指定维护者的信息RUN 执⾏命令USER 设置⽤户VOLUME 指定挂载点WORKDIR 指定⼯作⽬录 ADD 复制…...

Spring Boot 项目自定义加解密实现配置文件的加密

在Spring Boot项目中, 可以结合Jasypt 快速实现对配置文件中的部分属性进行加密。 完整的介绍参照: Spring Boot Jasypt 实现application.yml 属性加密的快速示例 但是作为一个技术强迫症,总是想着从底层开始实现属性的加解密,…...

在ubuntu下对NFS做性能测试

安装NFS 首先,安装服务 sudo apt update sudo apt install nfs-kernel-server然后创建共享文件夹 # 请自定义你自己的共享目录 sudo mkdir -p /exports/nfs4/homes sudo chmod -R 777 /exports/nfs4/homes# 这个可以根据no_root_squash标致选择设置。 # 如果不设…...

Spring-Cloud-Gateway-Samples,nacos为注册中心,负载均衡

背景:本想找个简单例子看下,无奈版本依赖太过复杂,花了点时间。记录下吧 使用Spring Cloud Gateway作为网关服务,Nacos作为注册中心,实现对子服务的负载均衡访问。简单例子。 一、gateway-main-nacos服务端&#xff…...

StarRocks Awards 2024 年度贡献人物

在过去一年,StarRocks 在 Lakehouse 与 AI 等关键领域取得了显著进步,其卓越的产品功能极大地简化和提升了数据分析的效率,使得"One Data,All Analytics" 的愿景变得更加触手可及。 虽然实现这一目标的道路充满挑战且漫…...

Autoencoder(李宏毅)机器学习 2023 Spring HW8 (Boss Baseline)

1. Autoencoder 简介 Autoencoder是一种用于学习数据高效压缩表示的人工神经网络。它由两个主要部分组成: Encoder 编码器将输入数据映射到一个更小的、低维空间中的压缩表示,这个空间通常称为latent space或bottleneck。 这一过程可以看作是数据压缩,去除冗余信息,仅保留…...

深入探索 ScottPlot.WPF:在 Windows 桌面应用中绘制精美图表的利器

一、ScottPlot.WPF 简介 ScottPlot.WPF 是基于 ScottPlot 绘图库专门为 Windows Presentation Foundation (WPF) 框架量身定制的强大绘图组件。它无缝集成到 WPF 应用程序中,为开发者提供了一种简洁、高效的方式来可视化数据,无论是科学研究中的实验数据展示、金融领域的行情…...

React中的useMemo 和 useEffect 哪个先执行?

在 React 组件的渲染过程中,useMemo 和 useEffect 的执行顺序是不同的。具体来说: useMemo 先执行:useMemo 是在 渲染阶段 执行的,它的作用是缓存计算结果,确保在渲染过程中可以直接使用缓存的值。 useEffect 后执行&…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序

一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

算法岗面试经验分享-大模型篇

文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...

GitHub 趋势日报 (2025年06月06日)

📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...