当前位置: 首页 > news >正文

深入解析 C++ 类型转换

简介

C++ 类型转换是开发者必须掌握的重要技能之一, 无论是处理隐式转换还是显式转换, 理解其背后的机制与用法至关重要. 本篇博客旨在从基础到高级全面解析 C++ 的类型转换, 包括实际开发中的应用场景和性能分析.


自动转换

隐式类型转换

编译器可以在无需明确指示的情况下, 将一种类型的值自动转换为另一种兼容类型. 例如:

struct Struct {Struct(float f) : m_(f) {}float m_ = 0;
};
float f = -3.1415926;
double d = f;
int i = f;
size_t s = f;
char c = f;
Struct st = f;
赋值语句
float f = -3.14;-3.14159
double d = f;-3.14159
int i = f;-3
size_t s = f;18446744073709551613
char c = f;乱码
Struct st = f;{.m_ = -3.14159}

算术类型转换

void drawLine(uint8_t start, uint8_t end);
uint8_t x = 10;
uint8_t width = 50;
// 此处等价于: drawLine(x, static_cast<unsigned char>(static_cast<int>(x) + static_cast<int>(width)));
drawLine(x, x+width);

符号转换

void print(const std::vector<int>& vec) {// 此处等价于: static_cast<unsigned long>(i) < vec.size()for (int i = 0; i < vec.size(); i++) {std::cout << i << ",";}
}

用户转换运算符

class Struct {public:Struct(float f) : m_(f) {}// 重载了转为int类型的操作符operator int() const { return m_; }private:float m_ = 0;
};int main() {Struct si(1);int i = si;
}

显示类型转换

C 风格类型转换

(type)var;
  1. 使用 var 创建 <type> 的临时变量
  2. <type> 可以是任何带有限定符的有效类型
  3. 通过更改变量中位的含义来覆盖类型系统
  4. 在某些情况下无法编译(稍后详细介绍)
  5. 支持在 constexpr 上下文中使用(稍后详细介绍)
  6. 可能导致未定义的行为
  7. 参与运算符优先级(级别 3)
struct A {};
struct B {};int main() {float f = 7.406f;int i = (int)f;             // int i = static_cast<int>(f);A* pa = (A*)&f;             // A* pa = reinterpret_cast<A*>(&f);B* pb = (B*)pa;             // B* pb = reinterpret_cast<B*>(pa);double d = *(double*)(pb);  // double d = *reinterpret_cast<double*>((pb));return 0;
}
C 风格和函数式符号转换的问题
  1. 单一符号, 多重含义
  2. 容易出错
  3. 无法 grep
  4. 使 C 和 C++ 语法复杂化

C++ 强制转换的目标

  1. 不同的符号或不同的任务
  2. 易于识别和搜索
  3. 执行 C 强制转换可以执行的所有操作
  4. 消除意外错误
  5. 使强制转换不那么诱人

C++有如下几种类型转换的关键词:

  1. static_cast
  2. const_cast
  3. dynamic_cast
  4. reinterpret_cast

static_cast

T1 var;
T2 var2 = static_cast<T>(var)
  1. var 类型创建临时变量
  2. 尝试通过隐式和用户定义的转换或构造找到从 T1T2 的路径. 无法删除 const 限定.

使用场景:

  1. 阐明隐式转换

    int i = 1;
    double d = static_cast<double>(i);
    
  2. 指示有意截断

    int a = 1234;
    uint8_t u8 = static_cast<uint8_t>(a);
    
  3. 在基类和派生类之间进行强制转换

    struct Base {};
    struct Derived : public Base {};Derived derived;
    Base& rb = derived;
    Derived& rd = static_cast<Derived&>(rb);
    
  4. void*T* 之间进行强制转换

    struct MyStruct {};
    void callback(void* handle) {auto p = static_cast<MyStruct*>(handle);//...
    }
    
多重转换
#include <cstdio>struct A {explicit A(int) { puts("A"); }
};
struct E {operator int() {puts("B::operator int");return 0;}
};int main() {E e;A a = static_cast<A>(e);return 0;
}
  1. A 有一个接受单个 int 的构造函数
  2. E 有一个用户定义的到 int 的转换
  3. 所以从ea的路径为: e -> int -> a

static_cast 与继承

#include <iostream>struct B1 {virtual ~B1() = default;int i;
};struct B2 {virtual ~B2() = default;int j;
};struct Derived : public B1, public B2 {int k;
};void Compare(void* p1, void* p2) {if (p1 == p2) {std::cout << "Same.\n";} else {std::cout << "Different.\n";}
}int main() {Derived d;// pd 指向派生类Derived* pd = &d;// pb1 是指向基类B1的指针B1* pb1 = static_cast<B1*>(&d);Compare(pd, pb1);  // Same.// pb2 是指向基类B1的指针B2* pb2 = static_cast<B2*>(&d);Compare(pd, pb2);  // Different.void* derived_plus_offset = (char*)pd + sizeof(B1);Compare(derived_plus_offset, pb2);  // Same.return 0;
}

为什么会出现这样的情况? 因为Derived的布局为:

+---------+  <--- pd and pb1
|    B1   |
+---------+  <--- pb2
|    B2   |
+---------+
| Derived |
+---------+...
static_cast 并非绝对正确

static_cast 无法防止向下转型为不相关的类型

#include <iostream>
#include <type_traits>struct Base {virtual void f() { std::cout << "base\n"; }virtual ~Base() = default;
};
struct Derived : public Base {void f() override { std::cout << "Derived\n"; }
};struct Other : public Base {void f() override { std::cout << "Other\n"; }
};int main() {Derived d;Base& b = d;  // OKd.f();  // Derivedb.f();  // DerivedOther& a = static_cast<Other&>(b);  // 危险, 转换到了其他类型a.f();                              // Derivedstatic_assert(std::is_same<decltype(a), Other&>::value, "not the same");return 0;
}

const_cast

  1. 从变量中删除或添加 constvolatile 限定符, 不能更改类型
  2. 不会更改原始变量的 CV 限定符
#include <iostream>void use_pointer(int* p) { std::cout << "*p = " << *p << std::endl; }
void modify_pointer(int* p) {*p = 42;std::cout << "\tmodify_pointer *p <- 42\n"<< "\tmodify_pointer *p = " << *p << std::endl;
}int main() {const int i = 7;use_pointer(const_cast<int*>(&i));modify_pointer(const_cast<int*>(&i));std::cout << "i = " << i << std::endl;  // i = 7int j = 4;const int* cj = &j;modify_pointer(const_cast<int*>(cj));std::cout << "i = " << i << std::endl;  // i = 7return 0;
}

输出

*p = 7modify_pointer *p <- 42modify_pointer *p = 42
i = 7modify_pointer *p <- 42modify_pointer *p = 42
i = 7

可以看到虽然在函数modify_pointer里面指针指向的值发生了变化, 但是在外面的值却不受影响.

const_cast example: member overload

#include <stddef.h>class my_array {public:char& operator[](size_t offset) {// 此处调用const版本的实现, 避免重写一遍逻辑.return const_cast<char&>(const_cast<const my_array&>(*this)[offset]);}const char& operator[](size_t offset) const { return buffer[offset]; }private:char buffer[10];
};
int main() {const my_array a{};const auto& c = a[4];my_array mod_a;mod_a[4] = 7;return 0;
}

用于防止成员函数的代码重复.

运行时类型信息 (RTTI)

  1. 为实现定义的结构中的每个多态类型存储额外信息
  2. 允许在运行时查询类型信息
  3. 可以禁用以节省空间(gcc/clang: –fno-rtti, msvc: /GR-)

dynamic_cast

  1. 查看 To 是否与 From 位于同一公共继承树中
  2. 只能是引用或指针
  3. 不能删除 CV
  4. From 必须是多态的
  5. 需要 RTTI
  6. 如果类型不相关, 则对指针返回 nullptr, 对引用抛出 std::bad_cast
#include <cstdio>
#include <vector>struct A {virtual ~A() = default;
};
struct B : public A {};
struct C : public A {};
int main() {C c;B b;std::vector<A*> a_list = {&c, &b};for (size_t i = 0; i < a_list.size(); ++i) {A* pa = a_list[i];if (dynamic_cast<B*>(pa)) {printf("a_list[%lu] was a B\r\n", i);}if (dynamic_cast<C*>(pa)) {printf("a_list[%lu] was a C\r\n", i);}}return 0;
}

dynamic_cast 用例: UI 框架

struct Widget {};
struct Label : public Widget {};
struct Button : public Widget { void DoClick(); };

dynamic_cast can be expensive

from gcc’s rtti.c

reinterpret_cast

#include <cstdint>struct A {};
struct B {int i;int j;
};int main() {int i = 0;int* pi = &i;uintptr_t uipt = reinterpret_cast<uintptr_t>(pi);float& f = reinterpret_cast<float&>(i);A a;B* pb = reinterpret_cast<B*>(&a);char buff[10];B* b_buff = reinterpret_cast<B*>(buff);return 0;
}
  1. 可以将任何指针或引用类型更改为任何其他指针或引用类型
  2. 也称为类型双关
  3. 不能在 constexpr 上下文中使用
  4. 不能删除 CV 限定
  5. 不确保 To 和 From 的大小相同
  6. 适用于内存映射功能

reinterpret_cast 访问私有继承的基类

struct B {void m() { puts("private to D"); }
};
struct D : private B {};
int main() {D d;B& b = reinterpret_cast<B&>(d);b.m();return 0;
}

Type Aliasing

当两种类型的内存布局兼容时, 将一种类型的内存当作另一种类型的内存来使用的行为.

compatible types

struct Point {int x;int y;
};
struct Location {int x;int y;
};
Point p{1, 2};
auto* loc = reinterpret_cast<Location*>(&p);

incompatible types

float f = 1.0f;
int* i = reinterpret_cast<int*>(&f);

C 风格类型转换在 C++ 中是如何实际执行的

对与一个类型转换

T conv = (T)val;

C++会依次尝试:

  1. T conv = const_cast<T>(val);
  2. T conv = static_cast<T>(val);
  3. T conv = const_cast<T>(static_cast<const T>(val));
  4. T conv = reinterpret_cast<T>(val);
  5. T conv = const_cast<T>(reinterpret_cast<const T>(val));

如果找到匹配则会选择并执行编译, 否则会报错.

总结

C++ 提供了更安全, 更明确的类型转换工具, 开发者应根据场景选择合适的转换方式. 通过熟练掌握这些工具, 您可以编写更健壮, 更易维护的代码. 希望本博客能帮助您更深入地理解 C++ 类型转换的精髓!

参考资源

  • Back to Basics: Casting - Brian Ruth - CppCon 2021

相关文章:

深入解析 C++ 类型转换

简介 C 类型转换是开发者必须掌握的重要技能之一, 无论是处理隐式转换还是显式转换, 理解其背后的机制与用法至关重要. 本篇博客旨在从基础到高级全面解析 C 的类型转换, 包括实际开发中的应用场景和性能分析. 自动转换 隐式类型转换 编译器可以在无需明确指示的情况下, 将一…...

C++ union 联合(八股总结)

union&#xff08;联合体&#xff09;允许在同一内存位置上存储不同的数据类型&#xff0c;所有成员共享相同的内存空间。 内存布局 由于联合体的所有成员都共享同一块内存&#xff0c;因此联合体的大小是其最大成员的大小。联合体的实际大小取决于其最大成员的类型和对齐要求…...

聊聊AI Agent

什么是AI Agent&#xff1f; AI Agent指的是一种使用人工智能技术的自主实体&#xff0c;它能够感知环境、做出决策&#xff0c;并采取行动以实现特定目标。AI Agent的核心思想是它能够独立运作&#xff0c;基于输入信息做出有根据的决策&#xff0c;并通过学习算法不断提高自…...

scala代码打包配置(maven)

目录 mavenpom.xml打包配置项&#xff08;非完整版&#xff0c;仅含打包的内容< build>&#xff09;pom.xml完整示例&#xff08;需要修改参数&#xff09;效果说明 maven 最主要的方式还是maven进行打包&#xff0c;也好进行配置项的管理 以下为pom文件&#xff08;不要…...

慧集通(DataLinkX)iPaaS集成平台-业务建模之业务对象(二)

3.UI模板 当我们选择一条已经建好的业务对象点击功能按钮【UI模板】进入该业务对象的UI显示配置界面。 右边填写的是UI模板的编码以及对应名称&#xff1b;菜单界面配置以业务对象UI模板编码获取显示界面。 3.1【列表-按钮】 展示的对应业务对象界面的功能按钮配置&#xff1…...

C++使用minio-cpp库在minio中创建bucket

直接看代码 #include <iostream> #include <string>#include "miniocpp/client.h"int main() {minio::s3::BaseUrl baseUrl("base url");minio::creds::StaticProvider staticProvider("access key", "secret key");mini…...

【大模型】大语言模型的数据准备:构建高质量训练数据的关键指南

大语言模型的数据准备&#xff1a;构建高质量训练数据的关键指南 大语言模型&#xff08;LLM, Large Language Model&#xff09;的训练离不开高质量的数据&#xff0c;而数据准备是模型性能的基石。无论是预训练还是微调&#xff0c;数据的选择、清洗和标注都会直接影响模型的…...

【解决】okhttp的java.lang.IllegalStateException: closed错误

问题 Android 使用OKHttp进行后端通信&#xff0c;后端处理结果&#xff0c;反馈给前端的responseBody中其实有值&#xff0c;但是一直报异常&#xff0c;后来才发现主要是OkHttp请求回调中response.body().string()只能有效调用一次&#xff0c;而我使用了两次&#xff1a; 解…...

TCP-IP详解卷 TCP的超时与重传

TCP-IP详解卷1-21&#xff1a;TCP的超时与重传&#xff08;Timeout and Retransmission&#xff09; 一&#xff1a;介绍 1&#xff1a; 与数据链路层的ARQ协议相类似&#xff0c;TCP使用超时重发的重传机制。 即&#xff1a;TCP每发送一个报文段&#xff0c;就对此报文段设置…...

Linux服务器查看【可用端口号连接】的命令和方式【netstat,ss,lsof】

Linux服务器查看可用连接的端口号的命令和方式 前言&#xff1a;1. 使用netstat命令&#xff08;netstat命令详解及使用指南&#xff09;一、什么是netstat二、基本使用方法与参数解释三、输出结果字段含义&#xff1a;四、查找可用于SSH连接的端口示例五、部分高级用法&#x…...

【WPS】【WORDEXCEL】【VB】实现微软WORD自动更正的效果

1. 代码规范方面 添加 Option Explicit&#xff1a;强制要求显式声明所有变量&#xff0c;这样可以避免因变量名拼写错误等情况而出现难以排查的逻辑错误&#xff0c;提高代码的健壮性。使用 On Error GoTo 进行错误处理&#xff1a;通过设置错误处理机制&#xff0c;当代码执行…...

Attention计算中的各个矩阵的维度都是如何一步步变化的?

在Transformer模型中&#xff0c;各个矩阵的维度变化是一个关键的过程&#xff0c;涉及到输入、编码器、解码器和输出等多个阶段。以下是详细的维度变化过程&#xff1a; 输入阶段 输入序列&#xff1a;假设输入序列的长度为seq_len&#xff0c;每个单词或标记通过词嵌入&…...

【数模学习笔记】插值算法和拟合算法

声明&#xff1a;以下笔记中的图片以及内容 均整理自“数学建模学习交流”清风老师的课程资料&#xff0c;仅用作学习交流使用 文章目录 插值算法定义三个类型插值举例插值多项式分段插值三角插值 一般插值多项式原理拉格朗日插值法龙格现象分段线性插值 牛顿插值法 Hermite埃尔…...

探索 C++ 与 LibUSB:开启 USB 设备交互的奇幻之旅

一、引言 在当今数字化时代&#xff0c;USB&#xff08;通用串行总线&#xff09;设备无处不在&#xff0c;从常见的 U 盘、鼠标、键盘&#xff0c;到复杂的工业数据采集设备、医疗监测仪器等&#xff0c;它们以方便快捷的插拔式连接&#xff0c;为人们的生活和工作带来了极大…...

二、模型训练与优化(4):模型优化-实操

下面我将以 MNIST 手写数字识别模型为例&#xff0c;从 剪枝 (Pruning) 和 量化 (Quantization) 两个常用方法出发&#xff0c;提供一套可实际动手操作的模型优化流程。此示例基于 TensorFlow/Keras 环境&#xff0c;示范如何先训练一个基础模型&#xff0c;然后对其进行剪枝和…...

3D可视化产品定制,应用于哪些行业领域?

3D可视化定制服务已广泛渗透至众多行业领域&#xff0c;包括汽车、家居、时尚鞋服、珠宝配饰以及数码电器等&#xff1a; 汽车行业&#xff1a; 借助Web全景技术与3D模型&#xff0c;我们高保真地再现了汽车外观&#xff0c;为用户带来沉浸式的车型浏览体验。用户可在展示界面自…...

Avalonia 入门笔记(零):概述

Avalonia 是一个基于 .NET 和 Skia 的开源、跨平台 UI 框架&#xff0c;支持 Windows、Linux、macOS、iOS、Android 和 WebAssembly。Skia 是一个基于 C 的开源 2D 渲染引擎&#xff0c;Avalonia 通过 Skia 自绘 UI 控件&#xff0c;保证在全平台具有一致的观感 基于 .NET 的跨…...

Unity TextMesh Pro入门

概述 TextMesh Pro是Unity提供的一组工具&#xff0c;用于创建2D和3D文本。与Unity的UI文本和Text Mesh系统相比&#xff0c;TextMesh Pro提供了更好的文本格式控制和布局管理功能。 本文介绍了TMP_Text组件和Tmp字体资产(如何创建字体资产和如何解决缺字问题),还有一些高级功…...

[论文阅读] (35)TIFS24 MEGR-APT:基于攻击表示学习的高效内存APT猎杀系统

《娜璋带你读论文》系列主要是督促自己阅读优秀论文及听取学术讲座&#xff0c;并分享给大家&#xff0c;希望您喜欢。由于作者的英文水平和学术能力不高&#xff0c;需要不断提升&#xff0c;所以还请大家批评指正&#xff0c;非常欢迎大家给我留言评论&#xff0c;学术路上期…...

12 USART串口通讯

1 串口物理层 两个设备的“DB9接口”之间通过串口信号建立连接&#xff0c;串口信号线中使用“RS232标准”传输数据信号。由于RS232电平标准的信号不能直接被控制器直接识别&#xff0c;所以这些信号会经过“电平转换芯片”转换成控制器能识别的“TTL校准”的电平信号&#xff…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势&#xff1a;专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发&#xff0c;是一款收费低廉但功能全面的Windows NAS工具&#xff0c;主打“无学习成本部署” 。与其他NAS软件相比&#xff0c;其优势在于&#xff1a; 无需硬件改造&#xff1a;将任意W…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

图表类系列各种样式PPT模版分享

图标图表系列PPT模版&#xff0c;柱状图PPT模版&#xff0c;线状图PPT模版&#xff0c;折线图PPT模版&#xff0c;饼状图PPT模版&#xff0c;雷达图PPT模版&#xff0c;树状图PPT模版 图表类系列各种样式PPT模版分享&#xff1a;图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持&#xff0c;都是在为未来积攒底气。 案例&#xff1a;OLED显示一个A 这边观察到一个点&#xff0c;怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 &#xff1a; 如果代码里信号切换太快&#xff08;比如 SDA 刚变&#xff0c;SCL 立刻变&#…...

jmeter聚合报告中参数详解

sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample&#xff08;样本数&#xff09; 表示测试中发送的请求数量&#xff0c;即测试执行了多少次请求。 单位&#xff0c;以个或者次数表示。 示例&#xff1a;…...