当前位置: 首页 > news >正文

OpenCV实现Kuwahara滤波

Kuwahara滤波是一种非线性的平滑滤波技术,其基本原理在于通过计算图像模板中邻域内的均值和方差,选择图像灰度值较为均匀的区域的均值来替代模板中心像素的灰度值。以下是Kuwahara滤波的详细原理说明:

一、基本思想

Kuwahara滤波的基本思想是基于图像局部区域的均匀性来判断并处理像素值。在图像中,边缘和纹理区域往往灰度值变化较大,而平滑区域则灰度值变化较小。因此,通过计算图像模板中各个子区域的均值和方差,可以选择出灰度值最为均匀的区域,并用该区域的均值来替代模板中心像素的灰度值,从而达到平滑图像的效果,同时保留图像的边缘信息。

二、滤波过程

  1. 定义滤波模板
    • 滤波模板通常是一个正方形区域,其大小可以根据需要进行调整。常见的模板大小有3x3、5x5等。
    • 模板被划分为多个重叠的子区域,每个子区域都包含模板中心像素的一部分邻域。
  2. 计算均值和方差
    • 对于模板中的每一个子区域,计算其灰度值的均值和方差。
    • 均值反映了子区域灰度值的平均水平,而方差则反映了子区域灰度值的波动程度。
  3. 选择均匀区域
    • 比较各个子区域的方差,选择方差最小的子区域作为均匀区域。
    • 由于方差最小的子区域灰度值变化最小,因此可以认为该区域的灰度值最为均匀。
  4. 替代中心像素
    • 用均匀区域的均值替代模板中心像素的灰度值。
    • 这样,模板中心像素的灰度值就被更新为周围最均匀区域的灰度值,从而达到平滑图像的效果。

在这里插入图片描述

上图是一个5x5的kuwahara filter,目标像素的值由这4个黑框包括着的4个area确定,area1~area4 这4个区域中像素点的方差最小的区域是我们的目标区域,方差的计算公式由下面的公式给出,确定目标区域之后,目标像素的值等于目标区域中像素点的平均值。

σ a = 1 ( N − 1 ) ∑ ( i ( x , y ) − μ a ) 2 \sigma_a=\sqrt{\frac{1}{(N-1)}\sum(i(x,y)-\mu_a)^2} σa=(N1)1(i(x,y)μa)2

三、opencv实现

使用opencv计算实现Kuawahara滤波时,为了减小局部均值和标准差的计算量,通常为使用积分图进行加速。实现代码如下:

import cv2 as cv
import numpy as npdef Kuwahara(input, win_size = 3):if win_size % 2 == 0:raise ValueError("win_size must be odd.")half_win_size = win_size // 2rows, cols = input.shape#计算积分图s, sq = cv.integral2(input, sdepth=cv.CV_64F, sqdepth=cv.CV_64F)#使用积分图计算win_size x win_size大小窗口的局部均值section_sum = s[0:rows - win_size + 1, 0:cols - win_size + 1] + \s[win_size:rows + 1, win_size:cols + 1] - \s[0:rows - win_size + 1, win_size:cols + 1] - \s[win_size:rows + 1, 0:cols - win_size + 1]section_mean = section_sum /(win_size * win_size)#补边操作section_mean = cv.copyMakeBorder(section_mean, half_win_size, half_win_size,half_win_size, half_win_size,cv.BORDER_REFLECT)#使用积分图计算win_size x win_size大小窗口的局部标准差section_sum_sq = sq[0:rows - win_size + 1, 0:cols - win_size + 1] + \sq[win_size:rows + 1, win_size:cols + 1] - \sq[0:rows - win_size + 1, win_size:cols + 1] - \sq[win_size:rows + 1, 0:cols - win_size + 1]section_mean_sq = section_sum_sq /(win_size * win_size)# 补边操作section_mean_sq = cv.copyMakeBorder(section_mean_sq, half_win_size, half_win_size,half_win_size, half_win_size,cv.BORDER_REFLECT)##方差速算:平方的均值减去均值的平方section_var = section_mean_sq - section_mean ** 2##选择最小的方差对应的均值代替中心像素完成滤波filter_result = input.copy()for r in range(half_win_size, rows - half_win_size):for c in range(half_win_size, cols - half_win_size):var = [section_var[r - half_win_size, c - half_win_size],section_var[r - half_win_size, c + half_win_size],section_var[r + half_win_size, c - half_win_size],section_var[r + half_win_size, c + half_win_size]]mean = [section_mean[r - half_win_size, c - half_win_size],section_mean[r - half_win_size, c + half_win_size],section_mean[r + half_win_size, c - half_win_size],section_mean[r + half_win_size, c + half_win_size]]filter_result[r, c] = np.uint8(mean[np.argmin(var)])return filter_resultif __name__ == '__main__':image = cv.imread("./noise.png", cv.IMREAD_GRAYSCALE)result = Kuwahara(image, 7)cv.imshow('image', image)cv.imshow('kuwa', result)result = np.concatenate((image, result), axis=1)cv.imwrite('kuwahara2.jpg', result)cv.waitKey()

在这里插入图片描述
在这里插入图片描述

四、实际应用

Kuwahara滤波在处理图像时,能够很好地保留图像的边缘信息(强噪声污染的情况下),同时平滑掉图像中的噪声和细节纹理。这使得Kuwahara滤波在图像处理领域具有广泛的应用价值,如图像增强、图像去噪、图像风格化等。
在实际应用中,Kuwahara滤波通常与其他图像处理技术相结合,以达到更好的处理效果。例如,在油画风格化处理中,可以利用Kuwahara滤波来平滑图像并保留边缘信息,从而模拟出油画的特点。此外,在断层特征增强、图像分割等领域,Kuwahara滤波也发挥着重要作用。

相关文章:

OpenCV实现Kuwahara滤波

Kuwahara滤波是一种非线性的平滑滤波技术,其基本原理在于通过计算图像模板中邻域内的均值和方差,选择图像灰度值较为均匀的区域的均值来替代模板中心像素的灰度值。以下是Kuwahara滤波的详细原理说明: 一、基本思想 Kuwahara滤波的基本思想…...

WINFORM - DevExpress -> DevExpress总结[安装、案例]

安装devexpress软件 路径尽量不换,后面破解不容易出问题 vs工具箱添加控件例如: ①使用控制台进入DevExpress安装目录: cd C:\Program Files (x86)\DevExpress 20.1\Components\Tools ②添加DevExpress控件: ToolboxCreator.exe/ini:toolboxcreator…...

Golang学习笔记_22——Reader示例

Golang学习笔记_19——Stringer Golang学习笔记_20——error Golang学习笔记_21——Reader 文章目录 io.Reader 示例从字符串中读取从文件中读取从HTTP响应中读取从内存的字节切片中读取自定义io.Reader实现 源码 io.Reader 示例 从字符串中读取 func ReadFromStrDemo() {str…...

【2024年华为OD机试】(A卷,100分)- 猜字谜(Java JS PythonC/C++)

一、问题描述 小王设计了一个简单的猜字谜游戏,游戏的谜面是一个错误的单词,比如 nesw,玩家需要猜出谜底库中正确的单词。猜中的要求如下: 对于某个谜面和谜底单词,满足下面任一条件都表示猜中: 变换顺序…...

iostat命令详解

iostat 命令是 I/O statistics(输入/输出统计)的缩写,用来报告系统的 CPU 统计信息和块设备及其分区的 IO 统计信息。iostat 是 sysstat 工具集的一个工具,在 Ubuntu 系统中默认是不带 iostat 命令的,需要自行安装: $ sudo apt in…...

Linux:操作系统简介

前言: 在本片文章,小编将带大家理解冯诺依曼体系以及简单理解操作喜欢,并且本篇文章将围绕什么以及为什么两个话题进行展开说明。 冯诺依曼体系: 是什么: 冯诺依曼体系(Von Neumann architecture&#xff…...

企业级信息系统开发讲课笔记4.12 Spring Boot默认缓存管理

文章目录 1. Spring Boot默认缓存管理2. Spring的缓存机制2.1 缓存机制概述2.2 缓存接口和缓存管理接口3. 声明式缓存注解3.1 @EnableCaching注解3.2 @Cacheable注解3.2.1 value/cacheNames属性3.2.2 key属性3.2.3 keyGenerator属性3.2.4 cacheManager/cacheResolver属性3.2.5 …...

2025制定一个高级java开发路线:分布式系统、多线程编程、高并发经验

1-熟悉分布式系统的设计和应用,熟悉分布式、缓存、消息、负载均衡等机制和实现者优先。 2-熟悉多线程编程,具备高并发经验优先。 技术学习规划:熟悉分布式系统和高并发技术 以下是针对目标要求的系统性学习规划,分为 阶段目标 和…...

20250110_ PyTorch中的张量操作

文章目录 前言1、torch.cat 函数2、索引、维度扩展和张量的广播3、切片操作3.1、 encoded_first_node3.2、probs 4、长难代码分析4.1、selected4.1.1、multinomial(1)工作原理: 总结 前言 1、torch.cat 函数 torch.cat 函数将两个张量拼接起来,具体地是…...

hadoop-yarn常用命令

一、YARN命令介绍 1. YARN命令简介 YARN提供了一组命令行工具,用于管理和监控YARN应用程序和集群。 2. yarn application命令 (1) yarn application命令的基本语法 yarn application命令的基本语法如下: yarn application [genericOptions] [comma…...

LabVIEW滤波器功能

程序通过LabVIEW生成一个带噪声的正弦波信号,并利用滤波器对其进行信号提取。具体来说,它生成一个正弦波信号,叠加高频噪声后形成带噪信号,再通过低通滤波器滤除噪声,提取原始正弦波信号。整个过程展示了信号生成、噪声…...

【Unity3D日常开发】Unity3D中打开Window文件对话框打开文件(PC版)

推荐阅读 CSDN主页GitHub开源地址Unity3D插件分享QQ群:398291828小红书小破站 大家好,我是佛系工程师☆恬静的小魔龙☆,不定时更新Unity开发技巧,觉得有用记得一键三连哦。 一、前言 这篇文章继续讲如何使用Unity3D打开Window文…...

ros2笔记-6.2 使用urdf创建机器人模型

本节主要跟着小鱼老师的视频操作,不同的仿真平台有不同的建模语言,但是几乎都支持URDF。 本节使用URDF创建一个机器人模型。 6.2.1 帮机器人创建一个身体 URDF使用XML来描述机器人的结构和传感器、执行器等信息。 在chapt6/chap6_ws/src创建功能包:r…...

【centos】校时服务创建-频率修改

在 NTP 配置中,校时频率通常是由 NTP 协议自动管理的,NTP 会根据网络延迟和时间偏差动态调整校时频率。不过,您可以通过配置文件中的一些参数来影响 NTP 的行为。 如果想要更改 NTP 的校时频率,可以考虑以下几个方面:…...

J.U.C(1)

目录 JUC(一)一:AQS二:reentrantlock原理1:加锁:2:解锁3:可重入锁原理4:可打断原理5:公平锁原理6:条件变量 三:读写锁(ree…...

计算机网络之---静态路由与动态路由

静态路由 静态路由是由网络管理员手动配置并固定的路由方式。路由器通过静态配置的路由条目来转发数据包,而不会自动调整。它不依赖于任何路由协议。 特点: 手动配置:网络管理员需要手动在路由器中配置每条静态路由。不自动更新:…...

Kubernetes1.28 编译 kubeadm修改证书有效期到 100年.并更新k8s集群证书

文章目录 前言一、资源准备1. 下载对应源码2.安装编译工具3.安装并设置golang 二、修改证书有效期1.修改证书有效期2.修改 CA 证书有效期 三、编译kubeadm四、使用新kubeadm方式1.当部署新集群时,使用该kubeadm进行初始化2.替换现有集群kubeadm操作 前言 kubeadm 默认证书为一…...

C++----STL(string)

引言:STL简介 什么是STL STL(standard template libaray-标准模板库): 是 C标准库的重要组成部分(注意:STL只是C标准库里的一部分,cin和cout也是属于C标准库的),不仅是一个可复用的组件库&…...

利用 Java 爬虫从 yiwugo 根据 ID 获取商品详情

在当今数字化时代,数据是商业决策的关键。对于从事国际贸易的商家来说,精准获取商品的详细信息至关重要。yiwugo 是一个知名的国际贸易平台,拥有海量的商品数据。通过 Java 爬虫技术,我们可以高效地从 yiwugo 根据商品 ID 获取详细…...

vue2修改表单只提交被修改的数据的字段传给后端接口

效果: 步骤一、 vue2修改表单提交的时候,只将修改的数据的字段传给后端接口,没有修改得数据不传参给接口。 在 data 对象中添加一个新的属性,用于存储初始表单数据的副本,与当前表单数据进行比较,找出哪些…...

synchronized 学习

学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险

C#入门系列【类的基本概念】:开启编程世界的奇妙冒险 嘿,各位编程小白探险家!欢迎来到 C# 的奇幻大陆!今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类!别害怕,跟着我,保准让你轻松搞…...

【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)

LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 题目描述解题思路Java代码 题目描述 题目链接:LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...

Python网页自动化Selenium中文文档

1. 安装 1.1. 安装 Selenium Python bindings 提供了一个简单的API,让你使用Selenium WebDriver来编写功能/校验测试。 通过Selenium Python的API,你可以非常直观的使用Selenium WebDriver的所有功能。 Selenium Python bindings 使用非常简洁方便的A…...

从物理机到云原生:全面解析计算虚拟化技术的演进与应用

前言:我的虚拟化技术探索之旅 我最早接触"虚拟机"的概念是从Java开始的——JVM(Java Virtual Machine)让"一次编写,到处运行"成为可能。这个软件层面的虚拟化让我着迷,但直到后来接触VMware和Doc…...