rknn环境搭建之docker篇
目录
- 1. rknn简介
- 2. 环境搭建
- 2.1 下载 RKNN-Toolkit2 仓库
- 2.2 下载 RKNN Model Zoo 仓库
- 2.3 下载交叉编译器
- 2.4 下载Docker镜像
- 2.5 下载ndk
- 2.5 加载docker镜像
- 2.6 docker run 命令创建并运行 RKNN Toolkit2 容器
- 2.7 安装cmake
- 3. 模型转换
- 3.1 下载模型
- 3.2 模型转换
- 4. 编译c++demo
- 5. 推送到板端运行
1. rknn简介
RKNN 是由瑞芯微电子公司开发的一个跨平台的神经网络推理框架。它主要具有以下特点:
-
跨平台支持:
RKNN 可以在多种硬件平台上运行,包括 ARM CPU、x86 CPU 以及瑞芯微的 NPU 等。这使得 RKNN 具有良好的灵活性和适用性。 -
高性能推理:
RKNN 针对不同硬件平台进行了优化,能够提供高效的神经网络推理性能。在瑞芯微 NPU 上的性能尤其出色。 -
模型转换:
-
RKNN 支持将主流的深度学习框架(如 TensorFlow、PyTorch、Caffe 等)训练的模型转换为 RKNN 格式,以便在目标硬件上部署运行。
-
丰富的算子支持:
RKNN 支持业界主流的神经网络算子,能够覆盖绝大部分的深度学习应用场景。 -
易用性:
RKNN 提供了友好的 API 和工具,方便开发者进行神经网络的部署和优化
2. 环境搭建
2.1 下载 RKNN-Toolkit2 仓库
git clone https://github.com/airockchip/rknn-toolkit2.git --depth 1
2.2 下载 RKNN Model Zoo 仓库
git clone https://github.com/airockchip/rknn_model_zoo.git --depth 1
2.3 下载交叉编译器
https://console.zbox.filez.com/l/H1fV9a (提取码是:rknn)
将其解压拷贝到rknn_model_zoo目录下
2.4 下载Docker镜像
Docker 镜像文件网盘下载链接:https://console.zbox.filez.com/l/I00fc3 (提取码:rknn)
2.5 下载ndk
https://github.com/android/ndk/wiki/Unsupported-Downloads
下载android-ndk-r19c,并将其解压拷贝到rknn_model_zoo目录下
2.5 加载docker镜像
docker load --input rknn-toolkit2-v2.3.0-cp38-docker.tar.gz
2.6 docker run 命令创建并运行 RKNN Toolkit2 容器
docker run -t -i --privileged \-v /dev/bus/usb:/dev/bus/usb \-v /root/wyw/rknn_model_zoo:/rknn_model_zoo \rknn-toolkit2:2.3.0-cp38 \/bin/bash
/root/wyw/rknn_model_zoo-宿主机目录
/rknn_model_zoo-映射的docker目录
2.7 安装cmake
进入docker后安装cmake
apt-get install cmake
3. 模型转换
3.1 下载模型
以RetinaFace为例
# 进入 rknn_model_zoo/examples/yolov5/model 目录
cd rknn_model_zoo/examples/RetinaFace/model
# 运行 download_model.sh 脚本,下载 yolov5 onnx 模型
# 例如,下载好的 onnx 模型存放路径为 model/yolov5s_relu.onnx
./download_model.sh
3.2 模型转换
# 进入 rknn_model_zoo/examples/RetinaFace/python 目录
cd /rknn_model_zoo/examples/RetinaFace/python
# 运行 convert.py 脚本,将原始的 ONNX 模型转成 RKNN 模型
# 用法: python convert.py model_path [rv1103|rv1103b|rv1106|rv1106b] [i8/fp] [output_path]
python convert.py ../model/RetinaFace_mobile320.onnx rk3568 i8 ../model/RetinaFace_mobile320.rknn
# 注:rv1103、rv1106和rv1103b、rv1106b生成的模型不能共用
注意:在model目录下有一个dataset.txt文件是用来量化生成校准表的,下载数据集(5000+),通过find 1500/ -type f > dataset.txt命令生成dataset.txt
4. 编译c++demo
我是用于Android端,因此编译使用ndk
# 添加到 build-linux.sh 脚本的开头位置即可
GCC_COMPILER=/rknn_model_zoo/arm-rockchip830-linux-uclibcgnueabihf/bin/arm-rockchip830-linux-uclibcgnueabihf
ANDROID_NDK_PATH=/rknn_model_zoo/android-ndk-r19c
./build-android.sh -t rk3568 -a arm64-v8a -d yolov5
5. 推送到板端运行
详见:01_Rockchip_RV1106_RV1103_Quick_Start_RKNN_SDK_V2.3.0_CN.pdf
相关文章:

rknn环境搭建之docker篇
目录 1. rknn简介2. 环境搭建2.1 下载 RKNN-Toolkit2 仓库2.2 下载 RKNN Model Zoo 仓库2.3 下载交叉编译器2.4 下载Docker镜像2.5 下载ndk2.5 加载docker镜像2.6 docker run 命令创建并运行 RKNN Toolkit2 容器2.7 安装cmake 3. 模型转换3.1 下载模型3.2 模型转换 4. 编译cdem…...
OpenCV相机标定与3D重建(56)估计物体姿态(即旋转和平移)的函数solvePnPRansac()的使用
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 使用RANSAC方案从3D-2D点对应关系中找到物体的姿态。 cv::solvePnPRansac 是 OpenCV 中用于估计物体姿态(即旋转和平移)的…...
vue倒计时组件封装,根据每个循环项的倒计时是否结束添加新类名。
1.创建countdown.vue文件: <template><p style"font-size: 10px">{{time}}</p> </template> <script>export default{data () {return {time : ,flag : false}},mounted () {let time setInterval(() > {if (this.fla…...
缩放 对内外参的影响
当你对图像进行同比例缩小时,图像的内参需要相应地变化,但外参通常保持不变。 相机内参 相机内参(内参矩阵)描述了相机的固有属性,包括焦距和主点(光轴与图像平面的交点)的坐标。 当你对图像…...

SQL面试题2:留存率问题
引言 场景介绍: 在互联网产品运营中,用户注册量和留存率是衡量产品吸引力和用户粘性的关键指标,直接影响产品的可持续发展和商业价值。通过分析这些数据,企业可以了解用户行为,优化产品策略,提升用户体验…...

晨辉面试抽签和评分管理系统之九:随机编排考生的分组(以教师资格考试面试为例)
晨辉面试抽签和评分管理系统(下载地址:www.chenhuisoft.cn)是公务员招录面试、教师资格考试面试、企业招录面试等各类面试通用的考生编排、考生入场抽签、候考室倒计时管理、面试考官抽签、面试评分记录和成绩核算的面试全流程信息化管理软件。提供了考生…...

【EtherCATBridge】- KRTS C++示例精讲(9)
EtherCATBridge示例讲解 文章目录 EtherCATBridge示例讲解结构说明代码说明 项目打开请查看【BaseFunction精讲】。 结构说明 EtherCATBridge.h :数据定义 EtherCATBridge.cpp :应用层源码 EtherCATBridge_dll.cpp :内核层源码 其余文件说明…...
C++实现设计模式--- 观察者模式 (Observer)
观察者模式 (Observer) 观察者模式 是一种行为型设计模式,它定义了一种一对多的依赖关系,使得当一个对象的状态发生改变时,其依赖者(观察者)会收到通知并自动更新。 意图 定义对象之间的一对多依赖关系。当一个对象状…...

iOS 解决两个tableView.嵌套滚动手势冲突
我们有这样一个场景,就是页面上有一个大的tableView, 每一个cell都是和屏幕一样高的,然后cell中还有一个可以 tableView,比如直播间的情形,这个时候如果我们拖动 cell里面的tableView滚动的话,如果滚动到内…...

Lianwei 安全周报|2025.1.13
新的一周又开始了,以下是本周「Lianwei周报」,我们总结推荐了本周的政策/标准/指南最新动态、热点资讯和安全事件,保证大家不错过本周的每一个重点! 政策/标准/指南最新动态 01 美国国土安全部发布《公共部门生成式人工智能部署手…...
rtthread学习笔记系列(2) -- 宏
文章目录 2.链接文件2.0. 参考链接2.1._stext 和 _etext2.2. "."与"*符号作用2.3..linkonce 段2.4. KEEP2.5 ENTRY2.6 PROVIDE2.7 AT2.8 SORT2.9 NOLOAD 源文件路径:https://github.com/wdfk-prog/RT-Thread-Study 2.链接文件 2.0. 参考链接 https://home.cs…...

美摄科技PC端视频编辑解决方案,为企业打造专属的高效创作平台
在当今这个信息爆炸的时代,视频已成为不可或缺的重要内容形式,美摄科技推出了PC端视频编辑解决方案的私有化部署服务,旨在为企业提供一款量身定制的高效创作平台。 一、全面功能,满足企业多样化需求 美摄科技的PC端视频编辑解决…...

服务端开发模式-thinkphp-重新整理workman
一、登录接口 <?php /*** 登录退出操作* User: 龙哥三年风水* Date: 2024/10/29* Time: 15:53*/ namespace app\controller\common; use app\controller\Emptys; use app\model\permission\Admin; use app\model\param\System as SystemModel; use Email\EmailSender; use…...

HTB:Access[WriteUP]
目录 连接至HTB服务器并启动靶机 信息收集 使用rustscan对靶机TCP端口进行开放扫描 将靶机TCP开放端口号提取并保存 使用nmap对靶机TCP开放端口进行脚本、服务扫描 使用nmap对靶机TCP开放端口进行漏洞、系统扫描 使用nmap对靶机常用UDP端口进行开放扫描 尝试匿名连接至…...

【论文笔记】SmileSplat:稀疏视角+pose-free+泛化
还是一篇基于dust3r的稀疏视角重建工作,作者联合优化了相机内外参与GS模型,实验结果表明优于noposplat。 abstract 在本文中,提出了一种新颖的可泛化高斯方法 SmileSplat,可以对无约束(未标定相机的)稀疏多…...

电机控制的数字化升级:基于DSP和FPGA的仿真与实现
数字信号处理器(DSP,Digital Signal Processor)在工业自动化领域的应用日益广泛。DSP是一种专门用于将模拟信号转换成数字信号并进行处理的技术,能够实现信号的数字滤波、重构、调制和解调等多项功能,确保信号处理的精…...

1/14 C++
练习:将图形类的获取周长和获取面积函数设置成虚函数,完成多态 再定义一个全局函数,能够在该函数中实现:无论传递任何图形,都可以输出传递的图形的周长和面积 #include <iostream>using namespace std; class Sh…...

java springboot3.x jwt+spring security6.x实现用户登录认证
springboot3.x jwtspring security6.x实现用户登录认证 什么是JWT JWT(JSON Web Token)是一种开放标准(RFC 7519),它用于在网络应用环境中传递声明。通常,JWT用于身份验证和信息交换。JWT的一个典型用法是…...

YOLOv5训练长方形图像详解
文章目录 YOLOv5训练长方形图像详解一、引言二、数据集准备1、创建文件夹结构2、标注图像3、生成标注文件 三、配置文件1、创建数据集配置文件2、选择模型配置文件 四、训练模型1、修改训练参数2、开始训练 五、使用示例1、测试模型2、评估模型 六、总结 YOLOv5训练长方形图像详…...

【2025最新】Poe保姆级订阅指南,Poe订阅看这一篇就够了!最方便使用各类AI!
1.Poe是什么? Poe, 全称Platform for Open Exploration。 Poe本身并不提供基础的大语言模型,而是整合多个来自不同科技巨头的基于不同模型的AI聊天机器人,其中包括来自OpenAI的ChatGPT,Anthropic的Claude、Google的PaLM…...

01-VMware16虚拟机详细安装
官网地址:https://www.vmware.com/cn.html 1.1 打开下载好的 .exe 文件, 双击安装。 1.2 点击下一步 1.3 先勾选我接受许可协议中的条款,然后点击下一步 1.4 自定义安装路径,注意这里的文件路径尽量不要包含中文,完成…...

Spring Cloud Alibaba Seata安装+微服务实战
目录 介绍核心功能三层核心架构安装微服务实战创建三个业务数据库编写库存和账户两个Feign接口订单微服务 seata-order-service9701库存微服务 seata-store-service9702账户微服务 seata-account-service9703测试结果 总结 介绍 Spring Cloud Alibaba Seata 是一款开源的分布式…...
我认为STM32输入只分为模拟输入 与 数字输入
核心概念解析 模拟输入 (Analog Input) 设计目的:直接连接模拟信号(如ADC采集电压、温度传感器输出) 硬件行为: ✅ 断开内部数字电路(施密特触发器禁用) ✅ 信号直通模拟外设(如ADC、运放&…...

系统模块与功能设计框架
系统模块与功能设计框架,严格遵循专业架构设计原则,基于行业标准(如微服务架构、DDD领域驱动设计)构建。设计采用分层解耦模式,确保可扩展性和可维护性,适用于电商、企业服务、数字平台等中大型系统。 系统…...

基于FPGA的超声波显示水位距离,通过蓝牙传输水位数据到手机,同时支持RAM存储水位数据,读取数据。
基于FPGA的超声波显示水位距离 前言一、整体框架二、代码架构1.超声波测距模块2.蓝牙数据发送模块3.数码管数据切换模块4.数码管驱动模块6.串口驱动7.顶层模块8.RAM ip核 仿真相关截图 前言 随着工业化进程的加速和环境保护意识的提升,对水资源管理和水位监测的需求…...

Python----循环神经网络(BiLSTM:双向长短时记忆网络)
一、LSTM 与 BiLSTM对比 1.1、LSTM LSTM(长短期记忆网络) 是一种改进的循环神经网络(RNN),专门解决传统RNN难以学习长期依赖的问题。它通过遗忘门、输入门和输出门来控制信息的流动,保留重要信息并丢弃无关…...

Spring Boot微服务架构(十一):独立部署是否抛弃了架构优势?
Spring Boot 的独立部署(即打包为可执行 JAR/WAR 文件)本身并不会直接丧失架构优势,但其是否体现架构价值取决于具体应用场景和设计选择。以下是关键分析: 一、独立部署与架构优势的关系 内嵌容器的优势保留 Spring Boot 独立部署…...

springboot2.x升级springboot3.x
springboot2.x升级springboot3.x 背景升级jdk版本为17以上springboot版本修改javax包更新mybatis-plus升级swagger升级springdocspringdoc配置 背景 当前项目是springboot2.5.9版本的springbootmybatis-plus项目,需要升级到springboot3.5.0项目。 升级jdk版本为17…...

【Vmwrae】快速安装windows虚拟机
前言 虚拟机是我们在使用电脑进行开发或者平常工作时经常使用到的工具 它可以自定义各种硬件,运行各种不同的系统,且无论发生什么都不会影响到实体机。 教程主要讲了如何在零基础的情况下快速安装一台虚拟机。 下载安装 VMware Workstation Pro17 …...
MySQL 8.0 绿色版安装和配置过程
MySQL作为云计算时代,被广泛使用的一款数据库,他的安装方式有很多种,有yum安装、rpm安装、二进制文件安装,当然也有本文提到的绿色版安装,因绿色版与系统无关,且可快速复制生成,具有较强的优势。…...