当前位置: 首页 > news >正文

OpenCV相机标定与3D重建(56)估计物体姿态(即旋转和平移)的函数solvePnPRansac()的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

使用RANSAC方案从3D-2D点对应关系中找到物体的姿态。
cv::solvePnPRansac 是 OpenCV 中用于估计物体姿态(即旋转和平移)的函数,它通过随机抽样一致性算法(RANSAC)来增强对异常值(outliers)的鲁棒性。

函数原型

bool cv::solvePnPRansac	
(InputArray 	objectPoints,InputArray 	imagePoints,InputArray 	cameraMatrix,InputArray 	distCoeffs,OutputArray 	rvec,OutputArray 	tvec,bool 	useExtrinsicGuess = false,int 	iterationsCount = 100,float 	reprojectionError = 8.0,double 	confidence = 0.99,OutputArray 	inliers = noArray(),int 	flags = SOLVEPNP_ITERATIVE 
)		

参数

  • 参数objectPoints 物体坐标空间中的物体点数组,格式为Nx3的单通道或1xN/Nx1的三通道,其中N是点的数量。也可以传递

  • 参数vector 类型的数据。

  • 参数imagePoints 对应的图像点数组,格式为Nx2的单通道或1xN/Nx1的双通道,其中N是点的数量。也可以传递 vector 类型的数据。

  • 参数cameraMatrix 输入的相机内参矩阵
    A = [ f x 0 c x 0 f y c y 0 0 1 ] A = \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} A= fx000fy0cxcy1

  • 参数distCoeffs 输入的畸变系数向量 (k1, k2, p1, p2 [,k3 [,k4, k5, k6 [,s1, s2, s3, s4 [,τx, τy]]]]),包含4、5、8、12或14个元素。如果该向量为空,则假设畸变为零。

  • 参数rvec 输出的旋转向量(见 Rodrigues),与 tvec 一起将模型坐标系中的点变换到相机坐标系中。

  • 参数tvec 输出的平移向量。

  • 参数useExtrinsicGuess 仅用于 SOLVEPNP_ITERATIVE 方法。如果为真(1),函数会使用提供的 rvec 和 tvec 值作为旋转和平移向量的初始近似值,并进一步优化它们。

  • 参数iterationsCount 迭代次数。

  • 参数reprojectionError RANSAC过程使用的内点阈值。参数值是观察到的投影点和计算出的投影点之间的最大允许距离,以被认为是内点。

  • 参数 confidence 算法产生有用结果的概率。

  • 参数inliers 输出向量,包含 objectPoints 和 imagePoints 中内点的索引。

  • 参数flags 解决PnP问题的方法(见 solvePnP)。

该函数根据一组物体点及其对应的图像投影,以及相机内参矩阵和畸变系数来估计物体的姿态。这个函数寻找一个使重投影误差最小的姿态,即观测到的投影点 imagePoints 和使用 projectPoints 投影的 objectPoints 之间的平方距离之和最小。RANSAC的使用使得函数对异常值具有鲁棒性。

注意

使用 solvePNPRansac 进行物体检测的一个示例可以在 opencv_source_code/samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/ 找到。
最小样本集步骤中用于估计相机姿态的默认方法是 SOLVEPNP_EPNP。例外情况包括:
如果选择了 SOLVEPNP_P3P 或 SOLVEPNP_AP3P,则这些方法将被使用。
如果输入点的数量等于4,则使用 SOLVEPNP_P3P。
使用所有内点估计相机姿态的方法由 flags 参数定义,除非它等于 SOLVEPNP_P3P 或 SOLVEPNP_AP3P,在这种情况下,将使用 SOLVEPNP_EPNP 方法代替。

代码示例

#include <iostream>
#include <opencv2/opencv.hpp>
#include <vector>using namespace cv;
using namespace std;int main()
{// 确保至少有4个点对vector< Point3f > objectPoints = { Point3f( 0.0f, 0.0f, 0.0f ), Point3f( 1.0f, 0.0f, 0.0f ), Point3f( 0.0f, 1.0f, 0.0f ), Point3f( 1.0f, 1.0f, 0.0f ) };vector< Point2f > imagePoints = { Point2f( 300.0f, 300.0f ), Point2f( 400.0f, 300.0f ), Point2f( 300.0f, 400.0f ), Point2f( 400.0f, 400.0f ) };// 检查点的数量是否一致if ( objectPoints.size() != imagePoints.size() || objectPoints.size() < 4 ){cerr << "Error: Need at least 4 point pairs and the number of points must match." << endl;return -1;}// 相机内参矩阵Mat cameraMatrix = ( Mat_< double >( 3, 3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 );// 畸变系数Mat distCoeffs = ( Mat_< double >( 5, 1 ) << 0.2624, -0.9531, -0.0054, 0.0026, 1.1633 );// 输出变量Vec3d rvec;  // 旋转向量Vec3d tvec;  // 平移向量// 调用 solvePnPRansac 函数bool success = solvePnPRansac( objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec, false, 100, 8.0, 0.99, noArray(), SOLVEPNP_ITERATIVE );if ( success ){cout << "成功找到解:" << endl;cout << "旋转向量: " << rvec << endl;cout << "平移向量: " << tvec << endl;// 可选:将旋转向量转换为旋转矩阵Mat R;Rodrigues( rvec, R );cout << "旋转矩阵: " << endl << R << endl;}else{cout << "未能找到有效的解" << endl;}return 0;
}

运行结果

成功找到解:
旋转向量: [0.0425377, -0.0162527, -0.000105512]
平移向量: [-0.251554, 0.504018, 5.22556]
旋转矩阵: 
[0.9998679414301481, -0.000240141627923739, -0.01624937021045788;-0.0004510929798306415, 0.999095423415709, -0.04252212864978416;0.01624488274385277, 0.04252384321511622, 0.9989633759767446]

相关文章:

OpenCV相机标定与3D重建(56)估计物体姿态(即旋转和平移)的函数solvePnPRansac()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 使用RANSAC方案从3D-2D点对应关系中找到物体的姿态。 cv::solvePnPRansac 是 OpenCV 中用于估计物体姿态&#xff08;即旋转和平移&#xff09;的…...

vue倒计时组件封装,根据每个循环项的倒计时是否结束添加新类名。

1.创建countdown.vue文件&#xff1a; <template><p style"font-size: 10px">{{time}}</p> </template> <script>export default{data () {return {time : ,flag : false}},mounted () {let time setInterval(() > {if (this.fla…...

缩放 对内外参的影响

当你对图像进行同比例缩小时&#xff0c;图像的内参需要相应地变化&#xff0c;但外参通常保持不变。 相机内参 相机内参&#xff08;内参矩阵&#xff09;描述了相机的固有属性&#xff0c;包括焦距和主点&#xff08;光轴与图像平面的交点&#xff09;的坐标。 当你对图像…...

SQL面试题2:留存率问题

引言 场景介绍&#xff1a; 在互联网产品运营中&#xff0c;用户注册量和留存率是衡量产品吸引力和用户粘性的关键指标&#xff0c;直接影响产品的可持续发展和商业价值。通过分析这些数据&#xff0c;企业可以了解用户行为&#xff0c;优化产品策略&#xff0c;提升用户体验…...

晨辉面试抽签和评分管理系统之九:随机编排考生的分组(以教师资格考试面试为例)

晨辉面试抽签和评分管理系统&#xff08;下载地址:www.chenhuisoft.cn&#xff09;是公务员招录面试、教师资格考试面试、企业招录面试等各类面试通用的考生编排、考生入场抽签、候考室倒计时管理、面试考官抽签、面试评分记录和成绩核算的面试全流程信息化管理软件。提供了考生…...

【EtherCATBridge】- KRTS C++示例精讲(9)

EtherCATBridge示例讲解 文章目录 EtherCATBridge示例讲解结构说明代码说明 项目打开请查看【BaseFunction精讲】。 结构说明 EtherCATBridge.h &#xff1a;数据定义 EtherCATBridge.cpp &#xff1a;应用层源码 EtherCATBridge_dll.cpp &#xff1a;内核层源码 其余文件说明…...

C++实现设计模式--- 观察者模式 (Observer)

观察者模式 (Observer) 观察者模式 是一种行为型设计模式&#xff0c;它定义了一种一对多的依赖关系&#xff0c;使得当一个对象的状态发生改变时&#xff0c;其依赖者&#xff08;观察者&#xff09;会收到通知并自动更新。 意图 定义对象之间的一对多依赖关系。当一个对象状…...

iOS 解决两个tableView.嵌套滚动手势冲突

我们有这样一个场景&#xff0c;就是页面上有一个大的tableView&#xff0c; 每一个cell都是和屏幕一样高的&#xff0c;然后cell中还有一个可以 tableView&#xff0c;比如直播间的情形&#xff0c;这个时候如果我们拖动 cell里面的tableView滚动的话&#xff0c;如果滚动到内…...

Lianwei 安全周报|2025.1.13

新的一周又开始了&#xff0c;以下是本周「Lianwei周报」&#xff0c;我们总结推荐了本周的政策/标准/指南最新动态、热点资讯和安全事件&#xff0c;保证大家不错过本周的每一个重点&#xff01; 政策/标准/指南最新动态 01 美国国土安全部发布《公共部门生成式人工智能部署手…...

rtthread学习笔记系列(2) -- 宏

文章目录 2.链接文件2.0. 参考链接2.1._stext 和 _etext2.2. "."与"*符号作用2.3..linkonce 段2.4. KEEP2.5 ENTRY2.6 PROVIDE2.7 AT2.8 SORT2.9 NOLOAD 源文件路径:https://github.com/wdfk-prog/RT-Thread-Study 2.链接文件 2.0. 参考链接 https://home.cs…...

美摄科技PC端视频编辑解决方案,为企业打造专属的高效创作平台

在当今这个信息爆炸的时代&#xff0c;视频已成为不可或缺的重要内容形式&#xff0c;美摄科技推出了PC端视频编辑解决方案的私有化部署服务&#xff0c;旨在为企业提供一款量身定制的高效创作平台。 一、全面功能&#xff0c;满足企业多样化需求 美摄科技的PC端视频编辑解决…...

服务端开发模式-thinkphp-重新整理workman

一、登录接口 <?php /*** 登录退出操作* User: 龙哥三年风水* Date: 2024/10/29* Time: 15:53*/ namespace app\controller\common; use app\controller\Emptys; use app\model\permission\Admin; use app\model\param\System as SystemModel; use Email\EmailSender; use…...

HTB:Access[WriteUP]

目录 连接至HTB服务器并启动靶机 信息收集 使用rustscan对靶机TCP端口进行开放扫描 将靶机TCP开放端口号提取并保存 使用nmap对靶机TCP开放端口进行脚本、服务扫描 使用nmap对靶机TCP开放端口进行漏洞、系统扫描 使用nmap对靶机常用UDP端口进行开放扫描 尝试匿名连接至…...

【论文笔记】SmileSplat:稀疏视角+pose-free+泛化

还是一篇基于dust3r的稀疏视角重建工作&#xff0c;作者联合优化了相机内外参与GS模型&#xff0c;实验结果表明优于noposplat。 abstract 在本文中&#xff0c;提出了一种新颖的可泛化高斯方法 SmileSplat&#xff0c;可以对无约束&#xff08;未标定相机的&#xff09;稀疏多…...

电机控制的数字化升级:基于DSP和FPGA的仿真与实现

数字信号处理器&#xff08;DSP&#xff0c;Digital Signal Processor&#xff09;在工业自动化领域的应用日益广泛。DSP是一种专门用于将模拟信号转换成数字信号并进行处理的技术&#xff0c;能够实现信号的数字滤波、重构、调制和解调等多项功能&#xff0c;确保信号处理的精…...

1/14 C++

练习&#xff1a;将图形类的获取周长和获取面积函数设置成虚函数&#xff0c;完成多态 再定义一个全局函数&#xff0c;能够在该函数中实现&#xff1a;无论传递任何图形&#xff0c;都可以输出传递的图形的周长和面积 #include <iostream>using namespace std; class Sh…...

java springboot3.x jwt+spring security6.x实现用户登录认证

springboot3.x jwtspring security6.x实现用户登录认证 什么是JWT JWT&#xff08;JSON Web Token&#xff09;是一种开放标准&#xff08;RFC 7519&#xff09;&#xff0c;它用于在网络应用环境中传递声明。通常&#xff0c;JWT用于身份验证和信息交换。JWT的一个典型用法是…...

YOLOv5训练长方形图像详解

文章目录 YOLOv5训练长方形图像详解一、引言二、数据集准备1、创建文件夹结构2、标注图像3、生成标注文件 三、配置文件1、创建数据集配置文件2、选择模型配置文件 四、训练模型1、修改训练参数2、开始训练 五、使用示例1、测试模型2、评估模型 六、总结 YOLOv5训练长方形图像详…...

【2025最新】Poe保姆级订阅指南,Poe订阅看这一篇就够了!最方便使用各类AI!

1.Poe是什么&#xff1f; Poe, 全称Platform for Open Exploration。 Poe本身并不提供基础的大语言模型&#xff0c;而是整合多个来自不同科技巨头的基于不同模型的AI聊天机器人&#xff0c;其中包括来自OpenAI的ChatGPT&#xff0c;Anthropic的Claude、Google的PaLM&#xf…...

type1-100,2 words

dish n.餐具、碟&#xff0c;盘子&#xff1b;菜肴、饭菜&#xff08;指一顿餐食中的一道菜&#xff09; kind of 稍微&#xff1b;有点 sort of 稍微&#xff1b;有点儿 smallish adj.有点小的 crack 敲碎/裂&#xff0c;敲开&#xff0c;砸开&#xff0c;砸碎&#xff1b;裂开…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

cf2117E

原题链接&#xff1a;https://codeforces.com/contest/2117/problem/E 题目背景&#xff1a; 给定两个数组a,b&#xff0c;可以执行多次以下操作&#xff1a;选择 i (1 < i < n - 1)&#xff0c;并设置 或&#xff0c;也可以在执行上述操作前执行一次删除任意 和 。求…...

ffmpeg(四):滤镜命令

FFmpeg 的滤镜命令是用于音视频处理中的强大工具&#xff0c;可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下&#xff1a; ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜&#xff1a; ffmpeg…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode&#xff1a; 2.利用 authorizationCode 获取 accessToken&#xff1a;文档中心 3.获取手机&#xff1a;文档中心 4.获取昵称头像&#xff1a;文档中心 首先创建 request 若要获取手机号&#xff0c;scope必填 phone&#xff0c;permissions 必填 …...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

ubuntu22.04有线网络无法连接,图标也没了

今天突然无法有线网络无法连接任何设备&#xff0c;并且图标都没了 错误案例 往上一顿搜索&#xff0c;试了很多博客都不行&#xff0c;比如 Ubuntu22.04右上角网络图标消失 最后解决的办法 下载网卡驱动&#xff0c;重新安装 操作步骤 查看自己网卡的型号 lspci | gre…...

Java详解LeetCode 热题 100(26):LeetCode 142. 环形链表 II(Linked List Cycle II)详解

文章目录 1. 题目描述1.1 链表节点定义 2. 理解题目2.1 问题可视化2.2 核心挑战 3. 解法一&#xff1a;HashSet 标记访问法3.1 算法思路3.2 Java代码实现3.3 详细执行过程演示3.4 执行结果示例3.5 复杂度分析3.6 优缺点分析 4. 解法二&#xff1a;Floyd 快慢指针法&#xff08;…...

Django RBAC项目后端实战 - 03 DRF权限控制实现

项目背景 在上一篇文章中&#xff0c;我们完成了JWT认证系统的集成。本篇文章将实现基于Redis的RBAC权限控制系统&#xff0c;为系统提供细粒度的权限控制。 开发目标 实现基于Redis的权限缓存机制开发DRF权限控制类实现权限管理API配置权限白名单 前置配置 在开始开发权限…...