当前位置: 首页 > news >正文

Deep4SNet: deep learning for fake speech classification

Deep4SNet:用于虚假语音分类的深度学习
摘要:
虚假语音是指即使通过人工智能或信号处理技术产生的语音记录。生成虚假录音的方法有"深度语音"和"模仿"。在《深沉的声音》中,录音听起来有点合成,而在《模仿》中,录音听起来很自然。另一方面,考虑到在互联网上传输的大量语音记录,检测虚假内容的任务并不微不足道。
为了检测通过深度语音和模仿获得的虚假语音,我们 提出了一种基于卷积神经网络( Convolutional Neural Network,CNN )的解决方案,使用图像增强和Dropout。所提出的架构使用2092个原始和虚假语音记录的直方图进行训练,并使用864个直方图进行交叉验证。使用476个新直方图进行外部验证,并计算准确率( Precision,P )和召回率( Recall,R )。对模仿型探究录音的 检测达到了P = 0.997,R = 0.997,对Deep Voice-based录音的检测达到了P = 0.985,R = 0.944。全局精度为0.985。根据结果,所提出的系统在检测虚假语音内容方面是成功的。
结论:
  • Deep4SNet在检测模仿和Deep Voice生成的伪造语音方面表现出色,整体准确率达到0.985。
  • 通过对比手工特征和自动特征提取方法,论文发现自动特征提取(使用直方图图像)更适合于伪造语音检测任务。
  • 通过图像增强和dropout技术,模型在防止过拟合方面表现出良好的鲁棒性。
背景
  • 伪造语音问题 :随着人工智能和信号处理技术的发展,伪造语音变得越来越逼真。伪造语音可能用于欺骗、误导或作为虚假证据,尤其是在法律领域,因此检测伪造语音具有重要意义。
  • 现有方法:传统的语音验证方法主要依赖于高斯混合模型(GMM)和通用背景模型(UBM)。近年来,基于遗传算法(GA)、蚁群优化(ACO)、支持向量机(SVM)和深度学习(DL)的方法也被提出用于语音验证和伪造语音检测。
内容成果
  • 研究方法
论文提出了一种基于卷积神经网络(CNN)的伪造语音检测模型,称为Deep4SNet。该模型使用图像增强和dropout技术来提高检测性能。
模型训练使用了2092个直方图,这些直方图来自原始语音和伪造语音录音。此外,还使用了864个直方图进行交叉验证,以及476个新的直方图用于外部验证。
论文比较了手工特征提取和自动特征提取两种方法。手工特征提取依赖于统计值和熵等特征,而自动特征提取则通过将语音信号转换为直方图图像来实现,将问题转化为计算机视觉问题。
Deep4SNet的网络结构相对简单,包含3个卷积+池化层,后接一个展平层、一个隐藏层和输出层。隐藏层中使用了dropout来防止过拟合。
  • 实验
实验设置:实验使用了基于模仿方法和Deep Voice算法生成的原始和伪造语音录音。数据集被平衡地分为训练集和验证集。
评价指标:使用准确率、损失、精确率和召回率等指标来评估模型性能。
过拟合策略:通过图像增强(水平翻转)和dropout来避免过拟合。实验结果表明,dropout率为0.2时模型性能较好。
外部测试:使用400个新的录音(20个原始录音和380个伪造录音)进行外部测试。测试结果显示,模型在检测模仿方法生成的伪造语音时精确率为0.997,召回率为0.997;在检测Deep Voice生成的伪造语音时精确率为0.985,召回率为0.944。
贡献点:
提出了一种基于深度学习的伪造语音检测方法,能够有效区分原始语音和通过模仿及Deep Voice技术生成的伪造语音。

相关文章:

Deep4SNet: deep learning for fake speech classification

Deep4SNet:用于虚假语音分类的深度学习 摘要: 虚假语音是指即使通过人工智能或信号处理技术产生的语音记录。生成虚假录音的方法有"深度语音"和"模仿"。在《深沉的声音》中,录音听起来有点合成,而在《模仿》中…...

3 前端: Web开发相关概念 、HTML语法、CSS语法

文章目录 前言:导学1 Web开发相关概念2 Web标准(网页标准)3 软件架构(CS/BS)(1)C/S: Client/Server 客户端 / 服务器端(2)B/S: Browser/Server 浏览器 / 服务器端VSCode配置前段开发环境一、HTML概念1 概念2 HTML快速入门(1)语法快速入门(2)VSCode一个 !(快捷键…...

SpringBoot工程快速启动

1.问题导入 以后我们和前端开发人员协同开发,而前端开发人员需要测试前端程序就需要后端开启服务器,这就受制于后端开发人员。 为了摆脱这个受制,前端开发人员尝试着在自己电脑上安装 Tomcat 和 Idea ,在自己电脑上启动后端程序&a…...

Unity WebGL:本机部署,运行到手机

Unity WebGL 简单介绍一下Unity WebGL的技术方案,在WebGL平台出包后,Unity的运行时C/C代码是通过Emscripten编译成了WebAssembly/Wasm;游戏逻辑部分的C#代码是先通过il2cpp转成C再编译转成的Wasm,Unity程序就就可以在支持WebAsse…...

【线性代数】行列式的概念

d e t ( A ) ∑ i 1 , i 2 , ⋯ , i n ( − 1 ) σ ( i 1 , ⋯ , i n ) a 1 , i 1 a 2 , i 2 , ⋯ , a n , i n det(A) \sum_{i_1,i_2,\cdots,i_n } (-1)^{\sigma(i_1,\cdots,i_n)} a_{1,i_1}a_{2,i_2},\cdots, a_{n,i_n} det(A)i1​,i2​,⋯,in​∑​(−1)σ(i1​,⋯,in​)a1…...

Android SystemUI——StatusBar视图创建(六)

上一篇文章我们介绍了 StatusBar 的构建过程,在 makeStatusBarView() 中获得 FragmentHostManager,用来管理 StatusBar 的窗口。 一、状态栏视图 在得到 FragmentHostManager 实例对象之后,还会继续调用 addTagListener() 方法设置监听对象,然后获取 FragmentManager 并开…...

Picocli 命令行框架

官方文档 https://picocli.info/ 官方提供的快速入门教程 https://picocli.info/quick-guide.html 使用 Picocli 创建命令行应用程序 Picocli 是一个用于构建 Java 命令行应用的强大框架,它简化了参数解析和帮助消息生成的过程。 下面是如何使用 Picocli 构建简单命…...

spring-cloud-starter-gateway 使用中 KafkaAppender的问题

公司需要将应用日志上报到kafka&#xff0c;以供分析与查看。 结合logback可以完成此功能&#xff0c;大致配置如下&#xff1a; <appender name"KafkaAppender" class"com.github.danielwegener.logback.kafka.KafkaAppender"><encoder class&…...

【全套】基于分类算法的学业警示预测信息管理系统

【全套】基于分类算法的学业警示预测信息管理系统 【摘 要】 随着网络技术的发展基于分类算法的学业警示预测信息管理系统是一种新的管理方式&#xff0c;同时也是现代学业预测信息管理的基础&#xff0c;利用互联网的时代与实际情况相结合来改变过去传统的学业预测信息管理中…...

Elasticsearch Python 客户端是否与自由线程 Python 兼容?

作者&#xff1a;来自 Elastic Quentin_Pradet 在这篇文章中&#xff0c;我们将进行一些实验&#xff0c;看看 Python Elasticsearch 客户端是否与新的 Python 3.13 自由线程&#xff08;free-threading&#xff09;版本兼容&#xff0c;其中 GIL 已被删除。 介绍 但首先&…...

基于大语言模型的组合优化

摘要&#xff1a;组合优化&#xff08;Combinatorial Optimization, CO&#xff09;对于提高工程应用的效率和性能至关重要。随着问题规模的增大和依赖关系的复杂化&#xff0c;找到最优解变得极具挑战性。在处理现实世界的工程问题时&#xff0c;基于纯数学推理的算法存在局限…...

#CSS混合模式:解决渐变背景下的文字可见性问题

在现代网页设计中&#xff0c;渐变背景的使用越来越普遍。然而&#xff0c;当我们在渐变背景上放置文字时&#xff0c;常常会遇到一个问题&#xff1a;文字在某些背景颜色下可能变得难以阅读。今天&#xff0c;我们将探讨一个优雅的解决方案&#xff1a;使用CSS混合模式。 问题…...

Vue2+OpenLayers给标点Feature添加信息窗体(提供Gitee源码)

目录 一、案例截图 二、安装OpenLayers库 三、代码实现 3.1、信息窗体DOM元素 3.2、创建Overlay 3.3、创建一个点 3.4、给点初始化点击事件 3.5、完整代码 四、Gitee源码 一、案例截图 二、安装OpenLayers库 npm install ol 三、代码实现 初始化变量&#xff1a; d…...

实战threeJS数字孪生开源 数字工厂

threeJS数字孪生 数字工厂 设备定位 基于three.js的数字工厂开源项目介绍 一、项目概述 本项目是一款基于three.js的数字工厂项目&#xff0c;旨在通过3D可视化技术&#xff0c;为工业制造领域提供一个直观、高效、智能的生产监控与管理平台。该项目结合了现代前端技术栈&…...

【Python基础篇】——第3篇:从入门到精通:掌握Python数据类型与数据结构

第3篇&#xff1a;数据类型与数据结构 目录 Python中的数据类型概述列表&#xff08;List&#xff09; 创建列表列表的基本操作列表方法列表推导式 元组&#xff08;Tuple&#xff09; 创建元组元组的基本操作元组的不可变性 字典&#xff08;Dictionary&#xff09; 创建字典…...

算法3(力扣83)-删除链表中的重复元素

1、题目&#xff1a;给定一个已排序的链表的头 head &#xff0c; 删除所有重复的元素&#xff0c;使每个元素只出现一次 。返回 已排序的链表 。 2、实现&#xff08; 因为已排序&#xff0c;所以元素若重复&#xff0c;必然在其下一位&#xff09;&#xff08;这里为在vscod…...

HarmonyOS 鸿蒙 ArkTs(5.0.1 13)实现Scroll下拉到顶刷新/上拉触底加载,Scroll滚动到顶部

HarmonyOS 鸿蒙 ArkTs(5.0.1 13)实现Scroll下拉到顶刷新/上拉触底加载 效果展示 使用方法 import LoadingText from "../components/LoadingText" import PageToRefresh from "../components/PageToRefresh" import FooterBar from "../components/…...

.NET8.0多线程编码结合异步编码示例

1、创建一个.NET8.0控制台项目来演示多线程的应用 2、快速创建一个线程 3、多次运行程序&#xff0c;可以得到输出结果 这就是多线程的特点 - 当多个线程并行执行时&#xff0c;它们的具体执行顺序是不确定的&#xff0c;除非我们使用同步机制&#xff08;如 lock、信号量等&am…...

SpringBoot项目中解决CORS跨域资源共享问题

在Spring Boot项目中解决CORS&#xff08;跨域资源共享&#xff09;问题&#xff0c;可以通过以下几种方法&#xff1a; 1. 使用CrossOrigin注解 这是最简单的方法&#xff0c;适用于单个控制器或控制器方法级别的跨域配置。你可以在控制器类或具体的方法上使用CrossOrigin注…...

Android string.xml中特殊字符转义

项目中要在string.xml 中显示特殊符号 空格&#xff1a; &#xff08;普通的英文半角空格但不换行&#xff09; 窄空格&#xff1a;  &#xff08;中文全角空格 &#xff08;一个中文宽度&#xff09;&#xff09; &#xff08;半个中文宽度&#xff0c;但两个空格比一个中文…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

测试markdown--肇兴

day1&#xff1a; 1、去程&#xff1a;7:04 --11:32高铁 高铁右转上售票大厅2楼&#xff0c;穿过候车厅下一楼&#xff0c;上大巴车 &#xffe5;10/人 **2、到达&#xff1a;**12点多到达寨子&#xff0c;买门票&#xff0c;美团/抖音&#xff1a;&#xffe5;78人 3、中饭&a…...

【算法训练营Day07】字符串part1

文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接&#xff1a;344. 反转字符串 双指针法&#xff0c;两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统&#xff0c;支持多语言对话&#xff08;如 中文&#xff0c;英文&#xff0c;日语&#xff09;&#xff0c;语音情感&#xff08;如 开心&#xff0c;悲伤&#xff09;&#x…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...