当前位置: 首页 > news >正文

dp 凸优化

时间有点仓促,过几天会补。
来自 czz 学长的课,SMWC -> Day4

目录

  • 凸函数介绍
  • WQS二分
    • 1. P2619【国家集训队 2】Tree I
    • 2. CF739E Gosha is hunting
  • 闵可夫斯基和
    • 1. QOJ-5421 Factories Once More
    • 2. GD 省集 tower
  • Slope Trick
    • 1. CF713C
    • 2. ABC217H
    • 3. [APIO2016] 烟火表演
  • 总结

凸函数介绍

凸函数即为一阶导单调的函数,在 OI 中通常体现为差分后单调的函数。这类具有凸性的问题在最优化问题中十分常见,通常具有其对应的线性规划或者费用流模型,也通常使用反悔贪心或者模拟费用流等方法解决。


WQS二分

详见 this 。
有一类问题,通常具有“选择恰好 k k k 个”的标志,但是在 d p dp dp 状态中记录 k k k 复杂度又太高,此时通常使用 WQS二分 解决。
WQS二分 使用的前提为问题关于选择个数 k k k 具有凸性。

1. P2619【国家集训队 2】Tree I

模板题

2. CF739E Gosha is hunting

凸性还可以联系到网络流,比如这题。
建立网络流模型,然后模拟网络流做法。 O ( n l o g n ) O(nlogn) O(nlogn)


闵可夫斯基和

( m i n , + ) (min, +) (min,+) ( m a x , + ) (max, +) (max,+) 卷积是常见的凸函数卷积,不难证明两个凸函数经过这样的卷积之后仍然是凸函数。(且这样的卷积常见于背包)
闵可夫斯基和常与分治等手段结合。

( m a x , + ) (max,+) (max,+) 卷积: f ( i ) = m a x j + k = i ( g ( j ) + h ( k ) ) f(i) = max_{j+k=i} (g(j) + h(k)) f(i)=maxj+k=i(g(j)+h(k))

1. QOJ-5421 Factories Once More

考虑 树形dp,设 f u , i f_{u,i} fu,i 表示 u u u 子树内选了 i i i 个点的最大值。容易得到 d p dp dp 转移方程, f u , i = m a x j + k = i f u , j + f v , k + j × k × w ( u , v ) f{u,i} = max_{j+k=i} f_{u,j} + f_{v,k} + j \times k \times w(u, v) fu,i=maxj+k=ifu,j+fv,k+j×k×w(u,v)
发现为凸函数,可以通过 ( m a x , + ) (max,+) (max,+) 卷积做成闵可夫斯基和的形式,进行加速 d p dp dp

2. GD 省集 tower

不会。
用闵可夫斯基和可以做到 O ( n l o g n ) O(nlogn) O(nlogn) ,但是分类讨论的常数可达 81 81 81 倍。


Slope Trick

Slope Trick 是一种优化 d p dp dp 的方法。核心思想是储存 d p dp dp 转移的关键信息(如分段函数的分界点)然后利用数据结构高效维护转移。
例如凸函数,我们只需维护初始的斜率,初始的值和斜率的变化点即可。
常见的维护操作有:函数相加,找最值,加一个一次函数,取前后缀max,平移,翻转等。

1. CF713C

经典模板题。

2. ABC217H

弄一个暴力 d p dp dp ,设 f i , j f_{i,j} fi,j 表示 T i T_i Ti 时刻角色在 j j j 可能的最小伤害,转移就枚举上一次在哪:
f i , j = m i n j k + l e n = j − l e n f i − 1 , k + [ ( j > X i ) = D i ] × ∣ j − X fi,j = minjk+len=j−lenfi−1,k + [(j > Xi) = Di] × |j − X fi,j=minjk+len=jlenfi1,k+[(j>Xi)=Di]×jX
事件的贡献是一个下凸函数,发现转移是一个先平移后加一个下凸函数的形式,不难验证仍然 fi 仍然是一个下凸函数。考虑用两个堆分别维护拐点。由于是下凸函数,则最小值的左边是单调递减,最小
值的右边是单调递增。则只需把维护最小值左边的拐点位置统一减去 len,最小值右边的拐点位置统一加上 len 即可。加上的函数很明显拐点只有一个 Xi,插入拐点然后维护堆的大
小即可。

3. [APIO2016] 烟火表演

又不会。

总结

===

相关文章:

dp 凸优化

时间有点仓促,过几天会补。 来自 czz 学长的课,SMWC -> Day4 。 目录 凸函数介绍WQS二分1. P2619【国家集训队 2】Tree I2. CF739E Gosha is hunting 闵可夫斯基和1. QOJ-5421 Factories Once More2. GD 省集 tower Slope Trick1. CF713C2. ABC217H3.…...

详细介绍:Kubernetes(K8s)的技术架构(核心概念、调度和资源管理、安全性、持续集成与持续部署、网络和服务发现)

目录 前言1、K8s架构概述1.1、控制面(Control Plane)1.2、工作节点(Worker Node) 2、Kubernetes核心概念2.1、Pod2.2、ReplicaSet2.3、Deployment2.4、Service2.5、Namespace2.6、ConfigMap与Secret2.7、Persistent Volume&#x…...

[SAP ABAP] Dialog屏幕开发

Dialog屏幕开发在SAP ABAP环境中被广泛应用于创建交互式的用户界面,允许终端用户与应用程序进行互动 Dialog屏幕开发相关资料 [Dialog屏幕开发] 设置GUI Status 菜单/GUI Title 标题 [Dialog屏幕开发] 屏幕绘制(文本/输入框/按钮控件)...

安全测试之 SSTI 模板注入入门

文章目录 一、什么是SSTI?二、python 中的 Jinja2 漏洞验证三、Java 的 Thymeleaf 模版漏洞验证四、小结 一、什么是SSTI? SSTI(Server-Side Template Injection)是一种服务器端模板注入漏洞,它出现在使用模板引擎的W…...

滑动窗口解题模板

滑动窗口适用于固定长度的窗口问题,或者需要动态维护一个窗口的场景。 模板 public int slidingWindowTemplate(int[] nums, int k) { int n nums.length; int maxSum 0; // 记录最大值(或最小值) int windowSum 0; // 当前窗口的值 …...

SOC和SOH的含义

SOC 和 SOH 是在电池管理系统中常见的两个概念,通常用于描述电池的状态,以下是具体解释: SOC(State of Charge) 定义:荷电状态,也叫剩余电量,反映的是电池在一定条件下当前所剩余的…...

Genetic Prompt Search via Exploiting Language Model Probabilities

题目 利用语言模型概率的遗传提示搜索 论文地址:https://www.ijcai.org/proceedings/2023/0588.pdf 项目地址:https://github.com/zjjhit/gap3 摘要 针对大规模预训练语言模型(PLMs)的即时调优已经显示出显著的潜力,尤其是在诸如fewshot学习…...

1561. 你可以获得的最大硬币数目

class Solution:def maxCoins(self, piles: List[int]) -> int:piles.sort()res,n0,len(piles)for i in range(n//3):respiles[n-2-2*i]return res这里如果"你"想要获取最大,那么从最大的开始找 每隔俩算一个最大累计,Bob默认自己从最小那找…...

DNA结合之Motif_1:CNN

1,首先可以识别在KO前后的motif——》由CNN模型做出识别,看看这个有没有什么灵感 2,ZNF143等都可以使用来识别 3,暂时只使用单个peak文件,后期可以使用ENCODE中所有的对应的TF的peak文件 1,文件解压之后…...

kong 网关和spring cloud gateway网关性能测试对比

该测试只是简单在同一台机器设备对spring cloud gateway网关和kong网关进行对比,受限于笔者所拥有的资源,此处仅做简单评测。 一、使用spring boot 的auth-service作为服务提供者 该服务提供了一个/health接口,接口返回"OK"&…...

【2024 CSDN博客之星】个人收获分享

目录 [ C 语言 ] [ 数据结构 ] [ 算法 ] [ C ] [Linux] [Mysql] [Redis 文档学习] [Docker 云原生] [Git] [Qt] 转眼间大学就过了一年半,这一年半间好像习惯了,开心了那就学会吧,不开心了学会吧就开心了......期间在学习上面也走了…...

Codeforces Round 998 (Div. 3)(部分题解)

补题链接 A. Fibonacciness 思路&#xff1a;了解清楚题意&#xff0c;求得是最大的斐波那契的度&#xff0c;数组只有5个数(最多度为3)&#xff0c;能列出其对应的式子 或 或 #include <bits/stdc.h> using namespace std; #define int long long void solve() {int …...

[创业之路-261]:《向流程设计要效率》-1-流程体系的建立是一场全方位的变革,一定会遇到各种阻力,需要全方位、系统性地进行流程管理

目录 一、思想和思维方式的转变 1.1 使能流程的战略 1.2 使能流程的组织 1. 流程决定组织 2. 基于流程分配责权利与资源 3. 从“管控”到“赋能” 1.3 使能流程的人才 1. 人才战略&#xff1a;从职能导向到流程导向 2. 能力模型&#xff1a;从职能专家到作战专家 3. …...

深入理解 Spring 的 Lazy Loading:原理、实现与应用场景

延迟加载&#xff08;Lazy Loading&#xff09;是 Spring 容器管理 Bean 的一种策略&#xff0c;指 只有在需要时&#xff08;调用 getBean() 方法获取 Bean 时&#xff09;才会实例化该 Bean。这是 Spring 提供的一种优化机制&#xff0c;用于提高启动效率和降低资源占用。 1.…...

扬帆数据结构算法之雅舟航程,漫步C++幽谷——LeetCode刷题之移除链表元素、反转链表、找中间节点、合并有序链表、链表的回文结构

人无完人&#xff0c;持之以恒&#xff0c;方能见真我&#xff01;&#xff01;&#xff01; 共同进步&#xff01;&#xff01; 文章目录 一、移除链表元素思路一思路二 二、合并两个有序链表思路&#xff1a;优化&#xff1a; 三、反转链表思路一思路二 四、链表的中间节点思…...

【unity游戏开发之InputSystem——02】InputAction的使用介绍(基于unity6开发介绍)

文章目录 一、InputAction简介1、InputAction是什么&#xff1f;2、示例 二、InputAction参数相关1、点击齿轮1.1 Actions 动作&#xff08;1&#xff09;动作类型&#xff08;Action Type&#xff09;&#xff08;2&#xff09;初始状态检查&#xff08;Initial State Check&a…...

Excel常用功能总结

Excel 是微软办公软件套装中的一个重要组件&#xff0c;用于数据处理和分析。以下是一些 Excel 的常用功能总结&#xff1a; 基本操作 1.单元格操作&#xff1a;选择、插入、删除单元格、行或列。 2.数据输入&#xff1a;输入文本、数字、日期和时间。 3.格式设置&#xff1a;设…...

【go语言】变量和常量

一、变量 1.1 变量的定义 程序 &#xff1a; 我们向电脑说了一段话&#xff0c;需要电脑才能理解 &#xff08;沟通机制 &#xff0c;xxx语言 -- 汇编 -- 机器码&#xff09;&#xff0c;电脑实际上识别的是机器码 &#xff1a; 0 1 1 1 0 1 &#xff08;高低电频&#xff09…...

Node.js——express中间件(全局中间件、路由中间件、静态资源中间件)

个人简介 &#x1f440;个人主页&#xff1a; 前端杂货铺 &#x1f64b;‍♂️学习方向&#xff1a; 主攻前端方向&#xff0c;正逐渐往全干发展 &#x1f4c3;个人状态&#xff1a; 研发工程师&#xff0c;现效力于中国工业软件事业 &#x1f680;人生格言&#xff1a; 积跬步…...

大语言模型的语境中“越狱”和思维链

大语言模型的语境中“越狱”和思维链 越狱(Jailbreaking) 含义:在大语言模型的语境中,“越狱”是指用户试图绕过语言模型的安全限制和使用规则,让模型生成违反伦理道德、包含有害内容(如暴力、歧视、恶意软件代码等)的输出。这些安全限制是由模型开发者设置的,目的是确…...

Linux应用开发之网络套接字编程(实例篇)

服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手&#xff1a;借助大模型技术&#xff0c;开发能根据用户输入的主题、风格等要求&#xff0c;生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用&#xff0c;帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

Springboot社区养老保险系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;社区养老保险系统小程序被用户普遍使用&#xff0c;为方…...

免费PDF转图片工具

免费PDF转图片工具 一款简单易用的PDF转图片工具&#xff0c;可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件&#xff0c;也不需要在线上传文件&#xff0c;保护您的隐私。 工具截图 主要特点 &#x1f680; 快速转换&#xff1a;本地转换&#xff0c;无需等待上…...

Go语言多线程问题

打印零与奇偶数&#xff08;leetcode 1116&#xff09; 方法1&#xff1a;使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...

Java详解LeetCode 热题 100(26):LeetCode 142. 环形链表 II(Linked List Cycle II)详解

文章目录 1. 题目描述1.1 链表节点定义 2. 理解题目2.1 问题可视化2.2 核心挑战 3. 解法一&#xff1a;HashSet 标记访问法3.1 算法思路3.2 Java代码实现3.3 详细执行过程演示3.4 执行结果示例3.5 复杂度分析3.6 优缺点分析 4. 解法二&#xff1a;Floyd 快慢指针法&#xff08;…...