当前位置: 首页 > news >正文

2025年数学建模美赛:A题分析(1)Testing Time: The Constant Wear On Stairs

2025年数学建模美赛 A题分析(1)Testing Time: The Constant Wear On Stairs
2025年数学建模美赛 A题分析(2)楼梯磨损分析模型
2025年数学建模美赛 A题分析(3)楼梯使用方向偏好模型
2025年数学建模美赛 A题分析(4)楼梯使用人数模型

特别提示:

  • 本文针对 2025年 A题进行分析,每天不断更新,建议收藏。

文章目录

  • 2025年数学建模美赛:A题分析(测试时间:楼梯的持续磨损)
    • 1. 题目翻译
    • 2. 借助 ChatGPT 分析问题
      • 1.1 提问:请分析以上问题的基本要求
      • 1.2 提问:请分析以上问题的解题思路
    • 3. 数学模型和编程实现


2025年数学建模美赛:A题分析(测试时间:楼梯的持续磨损)


1. 题目翻译

石头象征着坚韧的永久性,雕刻的岩石因其抵抗磨损的能力而被用作建筑材料。尽管具有耐久性,石头也无法完全抵抗磨损。而更为持久的,是人类的活动。
在这里插入图片描述
图 1:长期使用后出现不均匀磨损的台阶示例

用于建造台阶的石材和其他材料经受着持续的长期磨损,并且这种磨损可能是不均匀的。例如,在极其古老的寺庙和教堂中,台阶的中央部分可能会比边缘部分磨损得更加严重,导致踏面不再平整,而是呈现出弯曲的形态。由于这些建筑物的性质,通常已被人类居住了很长时间,但某些地点的人类活动历史往往早于建筑物的建设时间。这使得精确确定建筑物的建造日期变得困难。当一个建筑经历了漫长的建设期、经历过翻修或随着时间的推移加入了新的部分时,这种情况就更加复杂。

您的团队被要求为考古学家提供关于磨损楼梯的信息分析指导。台阶可能由不同的材料构成,例如石头或木头。尽管可能能够估算出一组台阶的建造时间,但很难得到精确的时间点。在历史记录中,也可能无法清晰显示某段台阶属于哪个具体的建造时期。

除了年龄问题,考古学家还可能对以下信息感兴趣:楼梯使用时的交通模式。例如,是否同时有人上下楼梯,还是某个方向更为常见?考古学家还可能想了解楼梯使用的频率。例如,是大量人群在短时间内使用,还是少量人在很长一段时间内使用?

您的任务
您的团队需要开发一个模型,通过特定楼梯的磨损模式得出以下基本预测:

  • 楼梯使用的频率。
  • 使用楼梯时是否更倾向于某一方向。
  • 同时使用楼梯的人数(例如,人们是否成对并排爬楼梯,还是单列行走)。

您可以假设考古学家能够接触到相关建筑并获取您团队认为重要的测量数据。这些测量需为非破坏性、成本较低,并可由一个小型团队使用最小化的工具完成。您需明确说明所需的测量内容。

此外,假设已经获得楼梯的建造年代、使用方式以及建筑中日常生活模式的估算信息,您需要回答以下问题:

  • 磨损是否与现有信息一致?
  • 楼梯的年龄及其估算的可靠性如何?
  • 楼梯是否经历过维修或翻修?
  • 能否确定材料的来源?例如,石材的磨损是否与考古学家认为的原始采石场材料一致?若使用木材,其磨损是否与假定使用的树种和年代相符?
  • 有关楼梯典型每日使用人数的信息,以及是否有大量人群在短时间内使用,或少量人群长期使用的情况?

报告要求
您的 PDF 报告不得超过 25 页,内容包括:

  • 一页摘要。
  • 目录。
  • 完整解决方案。
  • 参考文献列表。
  • 人工智能使用报告(若使用人工智能,不计入25页限制)。

报告长度没有特定的最低要求。允许提交部分解决方案。可以合理使用如 ChatGPT 等生成式 AI,但无需必须使用。若使用 AI,需遵守 COMAP AI 使用政策,并在 PDF 报告末尾附加 AI 使用报告(不计入 25 页限制)。

术语表

  • 永久性:持续或保持不变的状态或质量。
  • 不可受损:不受影响。
  • 非破坏性:不涉及对评估对象或材料的破坏或破损

2. 借助 ChatGPT 分析问题

1.1 提问:请分析以上问题的基本要求

  1. 核心任务 开发一个数学模型,通过分析楼梯的磨损模式,解答以下问题:
    (1)楼梯使用频率:推断楼梯每天使用的大致频率。
    (2)使用方向偏好:判断是否存在单一方向使用占优势的情况。
    (3)同时使用人数:分析同时使用楼梯的人数是单列还是并列形式。

  2. 附加问题 在已有信息的基础上回答以下问题:
    (1)磨损是否与已有的使用和生活模式数据一致。
    (2)楼梯的建造年代及其估算可靠性。
    (3)楼梯是否经历了维修或翻修。
    (4)材料的来源是否能通过磨损特性确定。
    (5)使用人群规模和时间分布的规律。

  3. 数据采集限制
    (1)非破坏性:所有测量过程不能破坏楼梯本身。
    (2)低成本:测量工具和方法的花费需相对低廉。
    (3)操作简单:由一个小型团队完成,且仅使用基本工具。

  4. 报告要求
    (1)包括模型、计算、预测及结论的详细解释。
    (2)必须包含一页摘要、目录、完整解决方案及参考文献。
    (3)可合理使用人工智能,但需在附录中说明具体使用情况。


1.2 提问:请分析以上问题的解题思路

为解决上述问题,可以将任务分解为以下步骤:

  1. 理解楼梯磨损的成因及模式
    (1)磨损通常集中在楼梯的中央,因为人们倾向于走中间区域。
    (2)楼梯边缘磨损更轻,反映出楼梯使用方向的偏好和频率。
    (3)磨损深度和材料属性相关,不同材料的磨损速度和模式不同。

  2. 确定必要的数据和测量方法
    (1)磨损深度和分布:通过激光扫描或高精度3D建模技术获取楼梯的表面形状。
    (2)材料特性:分析楼梯材料的密度、硬度,以及磨损速率。
    (3)建造历史:获取建筑物的时间线记录,结合已有历史数据。

非破坏性测量建议:
(1)激光扫描:测量台阶的形状和高度变化。
(2)红外光谱或X射线荧光分析:非破坏性地确定材料成分。

  1. 建立数学模型
    针对核心问题,建立以下子模型:
    (1)楼梯使用频率模型
    基于磨损深度与材料磨损速率的关系:

使用频率 = 磨损深度 单位时间的材料磨损速率 使用频率=\frac{磨损深度}{单位时间的材料磨损速率} 使用频率=单位时间的材料磨损速率磨损深度

使用已有的材料磨损实验数据,估算每日或每年的使用次数。

(2)方向偏好模型
通过分析楼梯中央与边缘的磨损程度,计算不同方向使用的概率:
方向偏好 = 中心区域磨损量 总磨损量 方向偏好=\frac{中心区域磨损量}{总磨损量} 方向偏好=总磨损量中心区域磨损量

** (3)同时使用人数模型**
分析磨损分布的宽度:
单列行走:磨损集中且窄。
并列行走:磨损分布更宽,呈多峰结构。
对楼梯宽度和磨损模式的统计分析,推断同时使用人数。

  1. 对附加问题的处理
  • 磨损一致性:比较模型预测与现有使用数据,评估一致性。
  • 建造年代估算:结合磨损速率与深度反推楼梯的建造时间。
    -材料来源分析:将楼梯材料的化学成分与已知采石场或木材来源对比。
    -人群规模与时间分布:
    • 大量人群短时间使用:磨损较深但不均。
    • 少量人群长期使用:磨损较浅且均匀。
  1. 模型验证
    通过历史记录或考古数据验证模型的预测结果。
    比较不同假设条件下的模型表现,分析结果的稳定性和适用性。

总结:

  1. 解决问题的关键点
    明确所需数据和测量方法,确保其非破坏性和可行性。
    理解磨损的物理和化学原理,为模型提供基础。
    通过数学模型,将磨损模式转化为可量化的行为推断。

  2. 实施建议
    优先开发磨损深度与频率的关联模型,因其与其他问题密切相关。
    利用现代非破坏性技术(如激光扫描)获取高质量的楼梯数据。
    在模型构建时,注重结合历史数据与实际测量结果,确保模型的可靠性和适用性。


3. 数学模型和编程实现

具体数学模型和编程,将在 2025/1/24 12:00 公布,请教收藏关注。

2025年数学建模美赛 A题分析(1)Testing Time: The Constant Wear On Stairs
2025年数学建模美赛 A题分析(2)楼梯磨损分析模型
2025年数学建模美赛 A题分析(3)楼梯使用方向偏好模型
[2025年数学建模美赛 A题分析(4)楼梯使用人数模型]


在这里插入图片描述

【本节完】

相关文章:

2025年数学建模美赛:A题分析(1)Testing Time: The Constant Wear On Stairs

2025年数学建模美赛 A题分析(1)Testing Time: The Constant Wear On Stairs 2025年数学建模美赛 A题分析(2)楼梯磨损分析模型 2025年数学建模美赛 A题分析(3)楼梯使用方向偏好模型 2025年数学建模美赛 A题分…...

利用 SoybeanAdmin 实现前后端分离的企业级管理系统

引言 随着前后端分离架构的普及,越来越多的企业级应用开始采用这种方式来开发。前后端分离不仅提升了开发效率,还让前端和后端开发可以并行进行,减少了相互之间的耦合度。SoybeanAdmin 是一款基于 Spring Boot 和 MyBatis-Plus 的后台管理系…...

996引擎 - 前期准备-配置开发环境

996引擎 - 前期准备 官网搭建服务端、客户端单机搭建 开发环境配置后端开发环境配置环境 前端开发环境配置环境 后端简介前端简介GUILayoutGUIExport 官网 996传奇引擎官网 所有资料从官网首页开始,多探索。 文档: 996M2-服务端Lua 996M2-客户端Lua 搭…...

Tensor 基本操作4 理解 indexing,加减乘除和 broadcasting 运算 | PyTorch 深度学习实战

前一篇文章,Tensor 基本操作3 理解 shape, stride, storage, view,is_contiguous 和 reshape 操作 | PyTorch 深度学习实战 本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started Tensor 基本使用 索引 indexing示例代码 加减…...

【Uniapp-Vue3】request各种不同类型的参数详解

一、参数携带 我们调用该接口的时候需要传入type参数。 第一种 路径名称?参数名1参数值1&参数名2参数值2 第二种 uni.request({ url:"请求路径", data:{ 参数名:参数值 } }) 二、请求方式 常用的有get,post和put 三种,默认是get请求。…...

【Prometheus】Prometheus如何监控Haproxy

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,…...

SSM开发(一)JAVA,javaEE,spring,springmvc,springboot,SSM,SSH等几个概念区别

目录 JAVA 框架 javaEE spring springmvc springboot SSM SSH maven JAVA 一种面向对象、高级编程语言,Python也是高级编程语言;不是框架(框架:一般用于大型复杂需求项目,用于快速开发)具有三大特性,所谓Jav…...

HTML5 常用事件详解

在现代 Web 开发中,用户交互是提升用户体验的关键。HTML5 提供了丰富的事件机制,允许开发者监听用户的操作(如点击、拖动、键盘输入等),并触发相应的逻辑处理。本文将详细介绍 HTML5 中的常用事件,包括鼠标…...

TCP全连接队列

1. 理解 int listen(int sockfd, int backlog) 第二个参数的作用 backlog:表示tcp全连接队列的连接个数1。 如果连接个数等于backlog1,后续连接就会失败,假设tcp连接个数为0,最大连接个数就为1,并且不accept获取连接…...

统计文本文件中单词频率的 Swift 与 Bash 实现详解

网罗开发 (小红书、快手、视频号同名) 大家好,我是 展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、Harmony OS、Java、Python等…...

iOS 权限管理:同时请求相机和麦克风权限的最佳实践

引言 在开发视频类应用时,我们常常会遇到需要同时请求相机和麦克风权限的场景。比如,在用户发布视频动态时,相机用于捕捉画面,麦克风用于录制声音;又或者在直播功能中,只有获得这两项权限,用户…...

Excel 实现文本拼接方法

1. 使用 & 运算符 这是最常见和简单的拼接方法。你只需使用 & 来连接多个文本单元格或文本字符串。 示例公式: A1 & B1这个公式会将 A1 和 B1 单元格中的文本合并为一个字符串。 如果你希望在文本之间加入分隔符(如空格、逗号等&#xf…...

软考信安27~Windows操作系统安全相关

1、Windows账户与组管理 1.1、用户账户查看 whoami #查看当前登录的用户名称 whoami /all #查看当前系统的用户名和组信息,以及SID whoami /user #查看当前用户的SID net user #查看系统中包含哪些用户 wmic useraccount get name,sid #查看…...

从 Spark 到 StarRocks:实现58同城湖仓一体架构的高效转型

作者:王世发,吴艳兴等,58同城数据架构部 导读: 本文介绍了58同城在其数据探查平台中引入StarRocks的实践,旨在提升实时查询性能。在面对传统Spark和Hive架构的性能瓶颈时,58同城选择StarRocks作为加速引擎&…...

WordPress Hunk Companion插件节点逻辑缺陷导致Rce漏洞复现(CVE-2024-9707)(附脚本)

免责申明: 本文所描述的漏洞及其复现步骤仅供网络安全研究与教育目的使用。任何人不得将本文提供的信息用于非法目的或未经授权的系统测试。作者不对任何由于使用本文信息而导致的直接或间接损害承担责任。如涉及侵权,请及时与我们联系,我们将尽快处理并删除相关内容。 0x0…...

使用 HTML 开发 Portal 页全解析

前言 在当今数字化时代,网站作为企业和个人展示信息、提供服务的重要窗口,其重要性不言而喻。而 Portal 页,作为网站的核心页面之一,承担着引导用户、整合信息等关键任务。那么,如何使用 HTML 开发一个功能齐全、界面…...

机器学习(二)

一,Multiple features(多类特征) 多元线性回归: 1,多类特征的符号表示: (可以类比二维数组) 2,多元线性回归模型: 二,Vectorization(向量化) (简化代码&缩短运行速度): 向量化实现多元线性回归模型: 向量化实现多…...

Laravel 实战:用Carbon筛选最近15分钟内的数据

在开发基于时间的特性时,常常需要筛选出在特定时间范围内的记录。例如,在一个设备报告系统中,你可能需要获取最近15分钟内的设备报告。本文将介绍如何在 Laravel 中实现这一功能,包括如何使用 Carbon 和 Eloquent 查询来筛选 crea…...

Ubuntu20.04 文件系统打不开

问题描述: 电脑中安装了相关的工具, 删除了一些东西之后,Linux 电脑操作系统为 Ubuntu20.04突然打不开文件系统了,命令 sudo nautilus 可以正常进入, 显示了很多权限问题。 使用过: killall nautilus 不起作用,后查原因:我无法作为普通用户…...

vue3的组件v-model(defineModel()宏)

这里展示的是vue3.4版本之前的如何在组件上使用以实现双向绑定 <template><p>我是子组件</p><input :value"props.modelValue" input"handelInput"/> </template><script lang"ts" setup>const props def…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

51c自动驾驶~合集58

我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留&#xff0c;CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制&#xff08;CCA-Attention&#xff09;&#xff0c;…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计&#xff0c;聪明的码友立马就知道了&#xff0c;该到数据访问模块了&#xff0c;要不就这俩玩个6啊&#xff0c;查库势在必行&#xff0c;至此&#xff0c;它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据&#xff08;数据库、No…...

Mac下Android Studio扫描根目录卡死问题记录

环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中&#xff0c;提示一个依赖外部头文件的cpp源文件需要同步&#xff0c;点…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...